Энергоэффективность в системах кондиционирования воздуха с применением испарительного охлаждения. Принципиальная схема обработки воздуха в местном кондиционере двухступенчатого испарительного охлаждения Системы двухступенчатого косвенного испарительного о

Союз Советских

Социалистических

Республик

Государственный комитет

СССР по делам изобретений и открытий (53) УДК 629. 113. .06.628.83 (088.8) (72) Авторы изобретения

В. С. Майсоценко, A. Б. Цимерман, М. Г. и И. N. Печерская

Одесский инженерно-строительный институт (71) Заявитель (54) КОНДИЦИОНЕР ДВУХСТУПЕНЧАТОГО ИСПАРИТЕЛЬНОГО

ОХЛЮ(ДЕНИЯ ДЛЯ ТРАНСПОРТНОГО СРЕДСТВА

Изобретение относится к области транспортного машиностроения и может быть использовано для кондиционирования воздуха в транспортных средствах.

Известны кондиционеры для транспортных средств, содержащие воздушную щелевую испарительную насадку с воздушными и водяными каналами, отделенными друг от друга стенками из микропористых пластин, при этом нижняя часть насадки погружена в поддон с жидкостью (1)

Недостатком данного кондиционера является невысокая эффективность охлаждения воздуха.

Наиболее близким техническим решением к изобретению является кондиционер двухступенчатого испарительного охлаждения для транспортного средства, содержащий теплообменник, поддон с жидкостью, в который погружена насадка, камеру для охлажпения поступающей в теплообменник жидкости с элементами для дополнительного охлаждения жидкости и канал для подачи в камеру воздуха иэ внешней среды, выполненный сужающимся по направлению к входному отверстию камеры (2

B этом компрессоре элементы для дополнительного охлаждения воздуха выполнены в виде форсунок.

Однако эффективность охлаждения в этом компрессоре также недостаточна, так как пределом охлаждения воздуха в этом случае является температура мокрого термометра вспомогательного потока воздуха в поддоне.

10 кроме того, известный кондиционер конструктивно сложен и содержит дублирующиеся узлы (два насоса, две емкости).

Цель изобретения — повышение сте15 пени эффективности охлаждения и компактности устройства.

Цель достигается тем, что в предлагаемом кондиционере элементы для дополнительного охлаждения выполне20 ны в виде теплообменной перегородки, расположенной вертикально и закрепленной на одной из стенок камеры с образованием зазора между нею и противолежащей ей стенкой камеры, а

25 со стороны одной иэ поверхностей перегородки установлен резервуар с жидкостью, стекающей по упомянутой поверхности перегородки„ при этом камера и поддон выполнены за одно це30 лое.

Насадка выполнена в виде блока из капиллярно-пористого материала.

На фиг. 1 изображена принципиальная схема кондиционера, на фиг. 2 раэреэ A-A на фиг. 1.

Кондиционер состоит из двух ступеней охлаждения воздуха: первая ступень - охлаждение воздуха в теплообменнике 1, вторая ступень — охлаждение его в насадке 2, которая выполнена в виде блока иэ капиллярно-пористого материала.

Перед теплообменником установлен вентилятор 3, приводимый so вращение электродвигателем 4 ° Для циркуляции воды в теплообменнике соосно с электродвигателем установлен водяной насос 5, подающий воду по трубопроводам 6 и 7 из камеры 8 н резервуар 9 с жидкостью. Теплообмен-ник 1 установлен н поддоне 10, который выполнен за одно целое с камерой

8. К теплообменнику примыкает канал

11 для подачи воздуха иэ внешней среды, при этом канал выполнен планно сужающимся в направлении к входному отверстию 12 воздушной полости

13 камеры 8. Внутри камеры размещены элементы для дополнительного охлаждения воздуха. Они выполнены в виде теплообменной перегородки 14, расположенной вертикально и закрепленной на стенке 15 камеры, противолежащей стенке 16, относительно которой перегородка расположена с зазором, Перегородка разделяет камеру на две сообщающиеся полости 17 и 18.

В камере предусмотрено окно 19, в.котором установлен каплеуловитель 20, а н поддоне выполнен проем 21. .При работе кондиционера вентилятор 3 прогоняет общий поток воздуха через теплообменник 1. При этом общий поток воздуха L „ охлаждается, и одна его часть — основной поток L

В связи с выполнением канала 11 сужающимся к входному отверстию 12 ! полости 13 скорость потока увеличивается, и в зазор, образованный между упомянутыми каналом и входным отверстием, подсасывается наружный воздух, увеличиная тем самым массу вспомогательного потока. Этот поток поступает в полость 17. Затем этот поток воздуха, обогнув перегородку 14, поступает в полость 18 камеры, где он движется в противоположном своему движению в полости 17 направлении. В полости 17 навстречу движению воздушного потока по перегородке стекает пленка 22 жидкости - воды из резервуара 9.

При контакте потока воздуха и воды в результате испарительно эффекта воТепло из полости 17 передается через перегородку 14 пленке 22 воды, способствуя дополнительному ее испарению. После этого в полость 18 поступает поток воздуха с более низкой температурой. Это, в свою очередь, влечет к еще большему снижению температуры перегородки 14, что вызывает дополнительное охлаждение потока воздуха в полости 17. Следовательно, температура потока воздуха будет опять понижаться после огибания перегородки и попадания н полость

18. Теоретически процесс охлаждения будет продолжаться до тех пор, пока его движущая сила не станет равной нулю. В данном случае движущей силой процесса испарительного охлаждения является психометрическая разность -температур потока воздуха после поворота его относительно перегородки и вступающего н контакт с пленкой воды в полости 18. Так как поток воздуха предварительно охлаждается в полости 17 при неизменном нлагосодержании, то психрометрическая разность температур потока воздуха в полости 18 стремится к нулю при приближении к точке росы. Следовательно, пределом охлаждения воды здесь является температура точки росы наружного воздуха. Тепло от воды поступает в поток воздуха н полости 18, при этом воздух нагревается,унлажняется и через окно 19 и каплеулонитель 20 выбрасывается н атмосферу.

Таким образом, в камере 8 организовано протиноточное движение обменивающихся теплом сред, а разделяющая теплообменная перегородка позволяет косвенным путем предварительно охладить подаваемый для охлаждения воды поток воздуха за счет процесса испарения воды, Охлажденная вода по перегородке стекат в низ камеры, а так как последняя выполнена за одно целое с поддоном, то оттуда насосом подается в теплообменник 1, а также расходуется на смачивание насадки за счет внутрикапиллярных сил.

Таким образом, основной поток воз.духа.L .„, предварительно охладившись беэ изменения влагосодержания в теплообменнике 1, поступает на дальнейшее охлаждение в насадку 2. Здесь эа счет тепло- и массообменна между смо40 ченной поверхностью насадки и основным потоком воздуха последний увлажняется и охлаждается, не меняя своего теплосодержания. Далее основной поток воздуха через проем в поддоне

59 да охлаждается, охлаждая при этом и перегородку. Поступающий в полость

17 камеры поток воздуха, обтекая перегородку, также охлаждается, но беэ изменения нлагосодержания. формула изобретения

1. Кондиционер двухступенчатого испарительного охлаждения для транспортного средства, содержащий теплообменник, подцон с жидкостью, в который погружена насадка, камеру для охлаждения поступающей в теплообмениик жидкости с элементами для дополнительного охлаждения жидкости и канал для подачи в камеру воздуха из внешней среды, выполненный сужающимся по направлению к входному отверстию камеры, о т л и ч а ю щ и и с я. тем, что, с целью повышения степени эффективности охлаждения и компактности компрессора, элементы для дополнительного охлаждения воздуха выполнены в виде теплообменной перегородки, расположенной вертикально и закрепленной на одной из стенок камеры с образованием зазора между нею и противолежащей ей стенкой камеры, а со стороны одной из поверх ностей перегородки установлен резервуар с жидкостью, стекающей по упомянутой поверхности перегородки, при этом камера и поддон выполнены sa одно целое.

Изобретение относится к технике вентиляции и кондяиион1фования воздуха. Цель изобретения - повьшение глубины охлаждения основного потока воздуха и снижение энергетических затрат. Орошаемые водой теплообменники (Т) 1 и 2 косвенно-испарительного и прямого испарительного охлалсдения воздуха последовательно расположены по ходу воздуха. Т 1 имеет каналы 3, 4 общего и вспомогательного потоков воздуха. Между Т 1 и 2 расположена камера 5 разделения воздушных потоков с перепускным каналом 6 и размещенным в нем per TiHpyeMbiM клапаном 7. Нагнетатель 8 с приводом 9 сообщен входом 10 с атмосферой, а выходом 11 - с каналами 3обп(его потока воздуха Клапан 7 через блок управления подключен к датчику т-ры воздуха в помещении Каналы 4вспомогательного потока воздуха сообщены выходом 12 с атмосферой, а Т 2 выходом 13 основного потока воздуха - с помещением. Канал 6 подключен к каналам 4, а привод 9 имеет регулятор 14 частоты вращения, подключенный к блоку управления. При необходимости уменьшения холодопроизводительности устройства по сигналу датчика т-ры воздуха в помещении через блок управления частично прикрьшается клапан 7, и с использоват1ем регулятора 14 пон гжaeтcя число оборотов нагнетателя с обеспечением пропорционального снижения расхода общего потока воздуха на величину уменьшения расхода вспомогательного потока воздуха. 1 ил. (Л to о 00 to

СОЮЗ СОВЕТСКИХ

СОЦИАЛИСТИЧЕСКИХ

РЕСПУБЛИК (51)4 F 24 F 5 00

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

К А8ТОРСКОМУ СВИДЕТЕЛЬСТВУ

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР

ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТНРЫТИЙ (2 1) 4 166558/29-06 (22) 25.12.86 (46) 30.08.88. Вю.t, !! 32 (71) Московский текстильный институт (72) О.Я. Кокорин, М.l0, Каплунов и С.В. Нефелов (53) 697.94(088.8) (56) Авторское свидетельство СССР

263102, кл. F ?4 Г 5/00, 1970. (54) УСТРОИСТВО ДЛЯ ДВУХСТУПЕНЧАТОГО

ИСПАРИТЕЛЬНОГО ОХЛАЖДЕНИЯ ВОЗДУХА (57) Изобретение относится к технике вентиляции и кондиционирования воздуха. Цель изобретения — повышение глубины охлаждения основного потока воздуха и снижение энергетических затрат.

Орошаемые водой теплообменники (Т) 1 и 2 косвенно-испарительного и прямого испарительного охлаждения воздуха последовательно расположены по ходу воздуха. Т 1 имеет каналы 3, 4 общего и вспомогательного потоков воздуха, Между Т 1 и 2 расположена камера 5 разделения воздушных потоков с пере„„SU„„1420312 д1. пускным каналом 6 и размещенным в нем регулируемым клапаном 7. Нагнетатель

8 с приводом 9 сообщен входом 10 с атмосферой, а выходом 11 — с каналами

3 общего потока воздуха. Клапан 7 через блок управления подключен к датчику т-ры воздуха в помещении. Каналы

4 вспомогательного потока воздуха сообщены выходом 12 с атмосферой, а Т 2 выходом 13 ос новного потока воздуха с помещением. Канал 6 подключен к каналам 4, а привод 9 имеет регулятор

14 частоты вращения, подключенный к блоку управления. При необходимости уменьшения холодопроизводительности устройства по сигналу датчика т-ры воздуха в помещении через блок управления частично прикрывается клапан 7, и с использованием регулятора 14 понижается число оборотов нагнетателя с обеспечением пропорционального снижения расхода общего потока воздуха на величину уменьшения расхода вспомогательного потока воздуха. 1 ил.

Изобретение относиуся к технике вентиляции и кондиционирования воздуха.

Целью изобретения является повыше5 ние глубины охлаждения основного потока воздуха и снижение энергетических затрат.

На чертеже представлена принципиальная схема устройства для двухступенчатого испарительного охлаждения воздуха. устройство для двухступенчатого испарительногo охлаждения воздуха содержит последовательно расположен- 15 ные по ходу воздуха орошаемые водой теплообменники 1 и 2 косвенно-испарительного охлаждения воздуха, первый чз которых имеет каналы 3 и 4 общег о и вспомогательного потоков воздуха. 20

Между теплообмснгнгками 1 и 2 расположена камера 5 1 лэделения воздушных потоков с перег ускным каналом 6 и размещенным в нем регулируемым кллгыном 7. Нлгнетлтель 8 с. приводом

9 сообщен входом 10 с атмосферой, л выходом 11 — с каналами 3 общего потокл ltna;ty;:;3. регулируемый клапан 7 через блок управления подклкгчен к длтчику температуры воздуха в помещении (HP показан) . Каналы 4 вспомогательного потока воздуха сообщены выходом

12 с атмосферой, а теплообменник 2 прямого исплрительного охлаждения воздуха выходом 13 основного потока воздуха — с пог1ещенггем. Перепускной канал 6 подклго.ген к клнллам 4 г3спг могательногo потлгсл воздухл, à привод 9 нагнетлтеля 8 имеет регул»тор 14 глстоты врлщени», подк ггочеггный к блоку 4О управления (не пока:3лн? . устройство.г -» д»ухступенчатого испарительного охллждени» l303духл и;ботает следующим образом.

Наружный воздух через вход 10 и 3- 45 ступает в гглгнетлтель 8 и через выход 11 ttartteTлется в каналы 3 общего потока воздуха теплообменникл косвенно-испарительного охлаждения. При пРохождении воздуха в каналах 3 ilpo исходит понижение его энтальпии ttpta постоянном вллгосодержанпи, после чего общий поток воздуха поступает в камеру 5 р л эд ел ения воздушных пс т ок ов.

Из камеры 5 часть предварительно охлажденного воздуха в вггде вспомогательного потока воздуха через перепускной канал 6 поступает в орошаемые сверху каналы 4 вспомогательного потока воэдуха, расположенные в теплообменник е 1 перпендикуляр но напр авл ению общего потока воздуха, В каналах 4 происходит испарительное охлаждение сте-, каемой вниз по стенкам каналов 4 пленки воды и вместе с тем охлаждение проходящего по каналам 3 общего потока воздуха.

Увплжненггый и повысивший свою энтальITHIt3 вспомогательный поток воздуха удаляется через выход 12 в атмосферу или может быть использован, например, для вентиляции вспомогательных помещений или охлаждения строится ьных огражденийй зданий. Ос н овной поток во здуха поступает из камеры 5 разделения воздушных потоков!3 теплообменник 2 прямого испарительного охлаждения, где воздух дополг3ггтельно охлаждается и унллжняется при постоянной энтальппи и одновременно обеспьливается, после чего обрлботаннь. и основной поток воздуха через выход 13 подается в псмещение. При необходимости уменьtttc!tttIt Ttoëoltoïðоиэводительности устро tet ITT по соответствующему сигналу дат икл температуры воздуха в помещении через блок управления (не показан) члст гчно прикрывается рег улиру- ° емый кллплн 7, что приводит к уменьttteI«t о расхода вспомогательного потока воздуха и снижению степени охлаждепи» общего потока воздуха в теплообменнике 1 косвенно-испаритепьного охлаждения. Одновременно с прикрытием

Р. гys!Itpyentoro к:глплнл 7 с испольэоваItItett рег улятора 14 глстоты вращения!

tot:;ãêëåтся число oборотов нлгнетлтеля 8 с обеспечением пропорционального.пш tt;t» расхода общего потока воздувели и:Itó уг:t нг»ггеttttя рлcxода

»еп..tc1t ttãp!I I ного пот кл воздуха.

1 срмуллиэобретения у.тройствс; для двухс гуггенчлтого исплрительного охлаждения воздуха, содержлщее i ос.гегго»л г егьпо p,lñ!TOIToженные по ходу воздуха орошаемые!30 пой т епл ообмон ники косвенно-ис гглрительногo и прямого исплрительногo ох лаждения воздуха, первый иэ которых имеет каналы общего и вспомоглтельного потоков воздуха, рлсположенную между теплообменниклми камеру ра зделени» воздушных потоков с перепускным каналом и рлзмещепным в нем регу1 ь яр уемым клапаном, наг вета тел ь с приводом, сообщеItttt ttt г3х

Составитель М. Ращепкин

Техред М.Ходанич Корректор С. Шекмар

Редактор М. Циткина

Тираж 663 Подписное

ВНИИПИ Государственного комитета СССР по делам изобретений и открытий

113035, Москва, Ж-35, Раушская наб., д. 4/5

Заказ 4313/40

Производственно-полиграфическое предприятие, г. Ужгород, ул. Проектная, 4 рой, а выходом — с каналами общего потока воздуха, причем регулируемый клапан через блок управления подключен к датчику температуры воздуха в помещении и каналы вспомогательного потока воздуха сообщены с атмосферой, а теплообменник прямого испарительного охлаждения — с помещением, о т л ич а ю щ е е с я тем, что, с целью повышения глубины охлаждения основного потока воздуха и снижения энергетических затрат, перепускной канал подключен к каналам вспомогательного потока воздуха, а привод нагнетатепя снабжен регулятором частоты вращения, подключенным к блоку управления.

Похожие патенты:

Для обслуживания отдельных небольших помещений или их групп удобны местные кондиционеры двухступенчатого испарительного охлаждения, осуществляемые на базе теплообменника косвенного испарительного охлаждения из алюминиевых накатных трубок (рис. 139). Воздух очищается в фильтре 1 и поступает к вентилятору 2, после нагнетательного отверстия которого делится на два потока - основной 3 и вспомогательный 6. Вспомогательный поток воздуха проходит внутри трубок теплообменника 14 косвенного испарительного охлаждения и обеспечивает испарительное охлаждение воды, стекающей по внутренним стенкам трубок. Основной поток воздуха проходит со стороны оребрения трубок теплообменника и отдает через их стенки тепло воде, охлаждаемой испарением. Рециркуляция воды в теплообменнике осуществляется при помощи насоса 4, который забирает воду из поддона 5 и подает ее на орошение через перфорированные трубки 15. Теплообменник косвенного испарительного охлаждения выполняет в совмещенных кондиционерах двухступенчатого испарительного охлаждения роль первой ступени.

Рассматриваемая система состоит из двух кондиционеров"

основного, в котором производится обработка воздуха для обслуживаемого помещения, и вспомогательного - градирни. Основное назначение градирни - воздушно-испарительное охлаждение воды, питающей первую ступень основного кондиционера в теплый период года (поверхностный теплообменник ПТ). Вторая ступень основного кондиционера - оросительная камера ОК, работающая в режиме адиабатического увлажнения, имеет обводной канал - байпас Б для регулирования влажности воздуха в помещении.

Кроме кондиционеров - градирен для охлаждения воды могут быть использованы промышленные градирни, фонтаны, брызгальные бассейны и т. п. В районах с жарким и влажным климатом в ряде случаев в дополнение к косвенному испарительному охлаждению используют машинное охлаждение.

системы многоступенчатого испарительного охлаждения. Теоретическим пределом охлаждения воздуха с использованием таких систем является температура точки росы.

Системы кондиционирования воздуха с применением прямого и косвенного испарительного охлаждения имеют более широкую область применения) по сравнению с системами, в которых используется только прямое (адиабатическое) испарительное охлаждение воздуха.

Двухступенчатое испарительное охлаждение, как известно, наиболее приемлемо в

районах с сухим и жарким климатом. При двухступенчатом охлаждении можно достигнуть более низких температур, меньших воздухообменов и меньшей относительной влажности воздуха в помещениях, чем при одноступенчатом охлаждении. Это свойство двухступенчатого охлаждения вызвало предложение о переходе целиком на косвенное охлаждение и ряд других предложений. Однако при всех прочих равных условиях эффект действия возможных систем испарительного охлаждения прямо зависит от изменений состояния наружного воздуха. Поэтому такие системы не всегда в течение сезона и даже одних суток обеспечивают поддержание требуемых параметров воздуха в кондиционируемых помещениях. Представление об условиях и границах целесообразного применения двухступенчатого испарительного охлаждения можно получить при сопоставлении нормируемых параметров внутреннего воздуха с возможными изменениями параметров наружного воздуха в районах с сухим и жарким климатом.

расчет таких систем следует выполнять с использованием J-d диаграммы в следующей последовательности.

На J-d диаграмме наносят точки с расчетными параметрами наружного (Н) и внутреннего (В) воздуха. В рассматриваемом примере по заданию на проектирование приняты значения: tн = 30 °С; tв = 24 °С; fв = 50 %.

Для точек Н и В определяем значение температуры мокрого термометра:



tмн = 19,72 °С; tмв = 17,0 °С.

Как видно, значение tмн почти на 3 °С выше, чем tмв, следовательно, для большего охлаждения воды, а затем наружного приточного воздуха, целесообразно подавать в градирню воздух, удаляемый вытяжными системами из офисных помещений.

Заметим, что при расчете градирни требуемый расход воздуха может оказаться больше удаляемого из кондиционируемых помещений. В этом случае в градирню надо подавать смесь наружного и удаляемого воздуха и в качестве расчетной принимать температуру мокрого термометра смеси.

Из расчетных компьютерных программ ведущих фирм – производителей градирен находим, что минимальный перепад между конечной температурой воды на выходе из градирни tw1 и температурой мокрого термометра tвм подаваемого в градирню воздуха следует принимать не менее 2 °С, то есть:

tw2 =tw1 +(2,5...3) °С. (1)

Для достижения более глубокого охлаждения воздуха в центральном кондиционере принимают конечную температуру воды на выходе из воздухоохладителя и на входе в градирню tw2 не более чем на 2,5 выше, чем на выходе из градирни, то есть:

tвк ≥ tw2 +(1...2) °С. (2)

Обратим внимание, что от температуры tw2 зависит конечная температура охлаждаемого воздуха и поверхность воздухоохладителя, так как при поперечном течении воздуха и воды конечная температура охлаждаемого воздуха не может быть ниже tw2.

Обычно конечную температуру охлаждаемого воздуха рекомендуется принимать на 1–2 °С выше конечной температуры воды на выходе из воздухоохладителя:

tвк ≥ tw2 +(1...2) °С. (3)

Таким образом, при выполнении требований (1, 2, 3) можно получить зависимость, связывающую температуру мокрого термометра воздуха, подаваемого в градирню, и конечную температуру воздуха на выходе из охладителя:

tвк =tвм +6 °С. (4)

Заметим, что в примере на рис. 7.14 приняты значения tвм = 19 °С и tw2 – tw1 = 4 °С. Но при таких исходных данных, вместо указанного в примере значения tвк = 23 °С, можно получить конечную температуру воздуха на выходе из воздухоохладителя не ниже 26–27 °С, что делает всю схему бессмысленной при tн = 28,5 °С.

При построении процессов на i - d диаграмме и выборе технологической схемы обработки воздуха необходимо стремиться к рациональному использованию энергии, обеспечивая экономное расходование холода, теплоты, электроэнергии, воды, а также экономию строительной площади, занимаемой оборудованием. С этой целью следует проанализировать возможность экономии искусственного холода путем применения прямого и косвенного испарительного охлаждения воздуха, применения схемы с регенерацией теплоты удаляемого воздуха и утилизацией теплоты вторичных источников, при необходимости - использования первой и второй рециркуляции воздуха, схемы с байпасом, а также управляемых процессов в теплообменных аппаратах.

Рециркуляция применяется в помещениях со значительными теплоизбытками, когда расход приточного воздуха, определенный на удаление избыточной теплоты, больше, чем необходимый расход наружного воздуха. В теплый период года рециркуляция позволяет сократить затраты холода по срав нению с прямоточной схемой той же производительности, если энтальпия наружного воздуха выше, чем энтальпия удаляемого воздуха, а также отказаться от второго подогрева. В холодный период - существенно сократить затраты теплоты на нагревание наружного воздуха. При использовании испарительного охлаждения, когда энтальпия наружного воздуха ниже, чем внутреннего и удаляемого, рециркуляция не целесообразна. Перемещение рециркуляционного воздуха по сети воздуховодов всегда связано с дополнительными затратами электроэнергии, требует строительный объем для размещения рециркуляционных воздуховодов. Рециркуляция будет целесообразна, если затраты на ее устройство и функционирование будут меньше, чем получаемая экономия теплоты и холода. Поэтому при определении расхода приточного воздуха всегда следует стремиться приблизить его к минимально необходимому значению наружного воздуха, принимая соответствующую схему воздухораспределения в помещении и тип воздухораспределителя и, соответственно, прямоточную схему. Рециркуляция также не совместима с регенерацией теплоты удаляемого воздуха. С целью сокращения расхода теплоты на нагревание наружного воздуха в холодный период года следует проанализировать возможность использования вторичной теплоты от низкопотенциальных источников, а именно: теплоты удаляемого воздуха, отходящих газов теплогенераторов и технологического оборудования, теплоты конденсации холодильных машин, теплоты осветительной арматуры, теплоты сточных вод и т.д. Теплообменники регенерации теплоты удаляемого воздуха позволяют также несколько снизить расход холода в теплое время года в районах с жарким климатом.

Чтобы сделать правильный выбор, необходимо знать возможные схемы обработки воздуха и их особенности. Рассмотрим наиболее простые процессы изменения состояния воздуха и их последовательность в центральных кондиционерах, обслуживающих одно помещение большого объема.

Обычно определяющим режимом для выбора технологической схемы обработки и определения производительности системы кондиционирования воздуха является теплый период года. В холодный период года стремятся сохранить расход приточного воздуха, определенный для теплого периода года, и схему обработки воздуха.

Двухступенчатое испарительное охлаждение

Температура мокрого термометра основного потока воздуха после охлаждения в поверхностном теплообменнике косвенного испарительного охлаждения имеет более низкое значение по сравнению с температурой мокрого термометра наружного воздуха, как естественный предел испарительного охлаждения. Поэтому при последующей обработке основного потока в контактном аппарате методом прямого испарительного охлаждения можно получить более низкие параметры воздуха по сравнению с естественным пределом. Такая схема последовательной обработки воздуха основного потока воздуха методом косвенного и прямого испарительного охлаждения называется двухступенчатым испарительным охлаждением. Схема компоновки оборудования центрального кондиционера, соответствующая двухступенчатому испарительному охлаждению воздуха, представлена на рисунке 5.7 а. Для нее также характерно наличие двух потоков воздуха: основного и вспомогательного. Наружный воздух, имеющий более низкую температуру по мокрому термометру, чем внутренний воздух в обслуживаемом помещении, поступает в основной кондиционер. В первом воздухоохладителе он охлаждается с помощью косвенного испарительного охлаждения. Далее он поступает в блок адиабатного увлажнения, где охлаждается и увлажняется. Испарительное охлаждение воды, циркулирующей через поверхностные воздухоохладители основного кондиционера, осуществляется при ее распылении в блоке адиабатного увлажнения во вспомогательном потоке. Циркуляционный насос забирает воду из поддона блока адиабатного увлажнения вспомогательного потока и подает ее в воздухоохладители основного потока и далее - на распыление во вспомогательном потоке. Убыль воды от испарения в основном и вспомогательном потоке восполняется через поплавковые клапаны. После двух ступеней охлаждения воздух подается в помещение.

Поделиться: