Какие числа называются положительными и отрицательными. Отрицательные числа это. Когда появились отрицательные числа

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

Мир чисел очень загадочен и интересен. Числа очень важны в нашем мире. Я хочу узнать как можно больше о происхождении чисел, об их значении в нашей жизни. Как их применять и какую роль они играют в нашей жизни?

В прошлом году на уроках математики мы начали изучать тему «Положительные и отрицательные числа». У меня возник вопрос, когда возникли отрицательные числа, в какой стране, какие ученые занимались этим вопросом. В Википедии я прочитал, что отрицательное число — элемент множества отрицательных чисел, которое (вместе с нулём) появилось в математике при расширении множества натуральных чисел. Цель расширения: обеспечить выполнение операции вычитания для любых чисел. В результате расширения получается множество (кольцо) целых чисел, состоящее из положительных (натуральных) чисел, отрицательных чисел и нуля.

В итоге я решил исследовать историю возникновения отрицательных чисел.

Целью данной работы является исследование истории возникновения отрицательных и положительных чисел.

Объект исследования - отрицательные числа и положительные числа

История положительных и отрицательных чисел

Люди долго не могли привыкнуть к отрицательным числам. Отрицательные числа казались им непонятными, ими не пользовались, просто не видели в них особого смысла. Эти числа появились значительно позже натуральных чисел и обыкновенных дробей.

Первые сведения об отрицательных числах встречаются у китайских математиков во II в. до н. э. и то, были известны лишь правила сложения и вычитания положительных и отрицательных чисел; правила умножения и деления не применялись.

Положительные количества в китайской математике называли «чен», отрицательные - «фу»; их изображали разными цветами: «чен» - красным, «фу» - черным. Это можно заметить в книге «Арифметика в девяти главах» (Автор Чжан Цань). Такой способ изображения использовался в Китае до середины XII столетия, пока Ли Е не предложил более удобное обозначение отрицательных чисел - цифры, которые изображали отрицательные числа, перечеркивали черточкой наискось справа налево.

Лишь в VII в. индийские математики начали широко использовать отрицательные числа, но относились к ним с некоторым недоверием. Бхасхара прямо писал: "Люди не одобряют отвлеченных отрицательных чисел...". Вот как индийский математик Брахмагупта излагал правила сложения и вычитания: «имущество и имущество есть имущество, сумма двух долгов есть долг; сумма имущества и нуля есть имущество; сумма двух нулей есть нуль… Долг, который отнимают от нуля, становится имуществом, а имущество - долгом. Если нужно отнять имущество от долга, а долг от имущества, то берут их сумму». «Сумма двух имуществ есть имущество».

(+х) + (+у) = +(х + у)‏ (-х) + (-у) = - (х + у)‏

(-х) + (+у) = - (х - у)‏ (-х) + (+у) = +(у - х)‏

0 - (-х) = +х 0 - (+х) = -х

Индийцы называли положительные числа «дхана» или «сва» (имущество), а отрицательные - «рина» или «кшайя» (долг). Индийские ученые, стараясь найти и в жизни образцы такого вычитания, пришли к толкованию его с точки зрения торговых расчетов. Если купец имеет 5000 р. и закупает товара на 3000 р., у него остается 5000 - 3000 = 2000, р. Если же он имеет 3000 р., а закупает на 5000 р., то он остается в долгу на 2000 р. В соответствии с этим считали, что здесь совершается вычитание 3000 - 5000, результатом же является число 2000 с точкой наверху, означающее «две тысячи долга». Толкование это носило искусственный характер, купец никогда не находил сумму долга вычитанием 3000 - 5000, а всегда выполнял вычитание 5000 - 3000.

Чуть позже в Древней Индии и Китае догадались вместо слов "долг в 10 юаней" писать просто "10 юаней", но рисовать эти иероглифы черной тушью. А знаков "+" и "-" в древности не было ни для чисел, ни для действий.

Греки тоже поначалу знаков не использовали. Древнегреческий ученый Диофант вообще не признавал отрицательные числа, и если при решении уравнения получался отрицательные корень, то он отбрасывал его как "недоступный". И Диофант старался так сформулировать задачи и составлять уравнения, чтобы избежать отрицательных корней, но вскоре Диофант Александрийский стал обозначать вычитание знаком.

Правила действий с положительными и отрицательными числами были предложены уже в III веке в Египте. Введение отрицательных величин впервые произошло у Диофанта. Он даже использовал специальный символ для них. В то же время Диофант употребляет такие обороты речи, как «Прибавим к обеим сторонам отрицательное», и даже формулирует правило знаков: «Отрицательное, умноженное на отрицательное, дает положительное, тогда как отрицательное, умноженное на положительное, дает отрицательное».

В Европе отрицательными числами начали пользоваться с XII-XIII вв., но до XVI в. большинство ученых считали их «ложными», «мнимыми» или «абсурдными», в отличие от положительных чисел - “истинных”. Положительные числа так же толковались как «имущество», а отрицательные - как «долг», «недостача». Даже знаменитый математик Блез Паскаль утверждал, что 0 − 4 = 0, так как ничто не может быть меньше, чем ничто. В Европе к идее отрицательного количества достаточно близко подошел в начале XIII столетия Леонардо Фибоначчи Пизанский. На состязании в решении задач с придворными математиками Фридриха II Леонардо Пизанскому было предложено решить задачу: требовалось найти капитал нескольких лиц. Фибоначчи получил отрицательное значение. "Этот случай, - сказал Фибоначчи, - невозможен, разве только принять, что один имел не капитал, а долг". Однако в явном виде отрицательные числа применил впервые в конце XV столетия французский математик Шюке. Автор рукописного трактата по арифметике и алгебре «Наука о числах в трёх частях». Символика Шюке приближается к современной.

Признанию отрицательных чисел способствовали работы французского математика, физика и философа Рене Декарта. Он предложил геометрическое истолкование положительных и отрицательных чисел - ввел координатную прямую. (1637 г.).

Положительные числа изображаются на числовой оси точками, лежащими вправо от начала 0, отрицательные - влево. Геометрическое истолкование положительных и отрицательных чисел способствовало к их признанию.

В 1544 году немецкий математик Михаил Штифель впервые рассматривает отрицательные числа как числа, меньшие нуля (т. е. « меньшие, чем ничто »). С этого момента отрицательные числа рассматриваются уже не как долг, а совсем по-новому. Сам Штифель писал: «Нуль находится между истинными и абсурдными числами…»

Почти одновременно со Штифелем защищал идею отрицательных чисел Бомбелли Раффаэле (около 1530—1572), итальянский математик и инженер, переоткрывший сочинение Диофанта.

Так же и Жирар считал отрицательные числа вполне допустимыми и полезными, в частности, для обозначения недостачи чего-либо.

Всякий физик постоянно имеет дело с числами: он всегда что-то измеряет, вычисляет, рассчитывает. Везде в его бумагах - числа, числа и числа. Если приглядеться к записям физика, то обнаружится, что при записи чисел он часто использует знаки "+" и "-". (Например: термометр, шкала глубин и высот)

Только в начале XIX в. теория отрицательных чисел закончила свое развитие, и "абсурдные числа" получили всеобщее признание.

Определение понятия числа

В современном мире человек постоянно пользуется числами, даже не задумываясь об их происхождении. Без знания прошлого нельзя понять настоящее. Число является одним из основных понятий математики. Понятие числа развивалось в тесной связи с изучением величин; эта связь сохраняется и теперь. Во всех разделах современной математики приходится рассматривать разные величины и пользоваться числами. Число — абстракция, используемая для количественной характеристики объектов. Возникнув ещё в первобытном обществе из потребностей счёта, понятие числа изменялось и обогащалось и превратилось в важнейшее математическое понятие.

Существует большое количество определений понятию «число».

Первое научное определение числа дал Евклид в своих «Началах», которое он, очевидно, унаследовал от своего соотечественника Эвдокса Книдского (около 408 - около 355 гг. до н. э.): «Единица есть то, в соответствии с чем каждая из существующих вещей называется одной. Число есть множество, сложенное из единиц». Так определял понятие числа и русский математик Магницкий в своей «Арифметике» (1703 г.). Еще раньше Евклида Аристотель дал такое определение: «Число есть множество, которое измеряется с помощью единиц». В своей «Общей арифметике» (1707 г) великий английский физик, механик, астроном и математик Исаак Ньютон пишет: «Под числом мы подразумеваем не столько множество единиц, сколько абстрактное отношение какой-нибудь величины к другой величине такого же рода, взятой за единицу. Число бывает трех видов: целое, дробное и иррациональное. Целое число есть то, что измеряется единицей; дробное - кратной частью единицы, иррациональное - число, не соизмеримое с единицей».

Мариупольский математик С.Ф.Клюйков также внес свой вклад в определение понятия числа: «Числа - это математические модели реального мира, придуманные человеком для его познания». Он же внес в традиционную классификацию чисел так называемые «функциональные числа», имея в виду то, что во всем мире обычно именуют функциями.

Натуральные числа возникли при счете предметов. Об этом я узнала в 5 классе. Затем я узнала, что потребность человека измерять величины не всегда выражается целым числом. После расширения множества натуральных чисел до дробных стало возможным делить любое целое число на другое целое число (за исключением деления на нуль). Появились дробные числа. Вычитать же целое число из другого целого числа, когда вычитаемое больше уменьшаемого, долгое время казалось невозможным. Интересным для меня оказался тот факт, что долгое время многие математики не признавали отрицательных чисел, считая, что им не соответствуют какие-либо реальные явления.

Происхождение слов «плюс» и «минус»

Термины произошли от слов plus - «больше», minus - «меньше». Сначала действия обозначали первыми буквами p; m. Многие математики предпочитали или Возникновение современных знаков «+», «-» не совсем ясно. Знак «+», возможно, происходит от сокращенной записи et, т.е. «и». Впрочем, может быть он возник из торговой практики: проданные меры вина отмечались на бочке «-», а при восстановлении запаса их перечеркивали, получался знак «+».

Италии ростовщики, давая деньги в долг, ставили перед именем должника сумму долга и черточку, вроде нашего минуса, а когда должник возвращал деньги, зачеркивали ее, получалось что-то вроде нашего плюса.

Современные знаки «+» и появились в Германии в последнее десятилетие XVв. в книге Видмана, которая была руководством по счету для купцов (1489г.). Чех Ян Видман уже писал «+» и «-» для сложения и вычитания.

Чуть позднее немецкий ученый Михель Штифель написал «Полную Арифметику», которая была напечатана в 1544 году. В ней встречаются такие записи для чисел: 0-2; 0+2; 0-5; 0+7. Числа первого вида он назвал «меньше, чем ничего» или «ниже, чем ничего». Числа второго вида назвал «больше, чем ничего» или «выше, чем ничего». Вам, конечно, понятны эти названия, потому что «ничего» - это 0.

Отрицательные числа в Египте

Однако, не смотря на такие сомнения, правила действий с положительными и отрицательными числами были предложены уже в III веке в Египте. Введение отрицательных величин впервые произошло у Диофанта. Он даже использовал специальный символ для них (сейчас мы в этом качестве используем знак «минус»). Правда, ученые спорят, обозначал ли символ Диофанта именно отрицательное число или просто операцию вычитания, потому что у Диофанта отрицательные числа не встречаются изолированно, а только в виде разностей положительных; и в качестве ответов в задачах он рассматривает только рациональные положительные числа. Но в то же время Диофант употребляет такие обороты речи, как «Прибавим к обеим сторонам отрицательное», и даже формулирует правило знаков: «Отрицательное, умноженное на отрицательное, дает положительное, тогда как отрицательное, умноженное на положительное, дает отрицательное» (то, что сейчас обычно формулируют: «Минус на минус дает плюс, минус на плюс дает минус»).

(-) (-) = (+), (-) (+) = (-).

Отрицательные числа в Древней Азии

Положительные количества в китайской математике называли «чен», отрицательные - «фу»; их изображали разными цветами: «чен» - красным, «фу» - черным. Такой способ изображения использовался в Китае до середины XII столетия, пока Ли Е не предложил более удобное обозначение отрицательных чисел - цифры, которые изображали отрицательные числа, перечеркивали черточкой наискось справа налево. Индийские ученые, стараясь найти и в жизни образцы такого вычитания, пришли к толкованию его с точки зрения торговых расчетов.

Если купец имеет 5000 р. и закупает товара на 3000 р., у него остается 5000 - 3000 = 2000, р. Если же он имеет 3000 р., а закупает на 5000 р., то он остается в долгу на 2000 р. В соответствии с этим считали, что здесь совершается вычитание 3000 - 5000, результатом же является число 2000 с точкой наверху, означающее «две тысячи долга».

Толкование это носило искусственный характер, купец никогда не находил сумму долга вычитанием 3000 - 5000, а всегда выполнял вычитание 5000 - 3000. Кроме того, на этой основе можно было с натяжкой объяснить лишь правила сложения и вычитания «чисел с точками», но никак нельзя было объяснить правила умножения или деления.

В V-VI столетиях отрицательные числа появляются и очень широко распространяются в индийской математике. В Индии отрицательные числа систематически использовали в основном так, как это мы делаем сейчас. Индийские математики используют отрицательные числа с VII в. н. э.: Брахмагупта сформулировал правила арифметических действий с ними. В его произведении мы читаем: « имущество и имущество есть имущество, сумма двух долгов есть долг; сумма имущества и нуля есть имущество; сумма двух нулей есть нуль… Долг, который отнимают от нуля, становится имуществом, а имущество - долгом. Если нужно отнять имущество от долга, а долг от имущества, то берут их сумму».

Индийцы называли положительные числа «дхана» или «сва» (имущество), а отрицательные - «рина» или «кшайя» (долг). Впрочем, и в Индии с пониманием и принятием отрицательных чисел были проблемы.

Отрицательные числа в Европе

Не одобряли их долго и европейские математики, потому что истолкование «имущество-долг» вызывало недоумения и сомнения. В самом деле, как можно «складывать» или «вычитать» имущества и долги, какой реальный смысл может иметь «умножение» или «деление» имущества на долг? (Г.И. Глейзер, История математики в школе IV-VI классы. Москва, Просвещение, 1981)

Вот почему с большим трудом завоевали себе место в математике отрицательные числа. В Европе к идее отрицательного количества достаточно близко подошел в начале XIII столетия Леонардо Фибоначчи Пизанский, однако в явном виде отрицательные числа применил впервые в конце XV столетия французский математик Шюке. Автор рукописного трактата по арифметике и алгебре «Наука о числах в трёх частях». Символика Шюке приближается к современной (Математический энциклопедический словарь. М., Сов. энциклопедия, 1988)

Современное истолкование отрицательных чисел

В 1544 году немецкий математик Михаил Штифель впервые рассматривает отрицательные числа как числа, меньшие нуля (т. е. « меньшие, чем ничто »). С этого момента отрицательные числа рассматриваются уже не как долг, а совсем по-новому. Сам Штифель писал: «Нуль находится между истинными и абсурдными числами…» (Г.И. Глейзер, История математики в школе IV-VI классы. Москва, Просвещение, 1981)

После этого Штифель полностью посвящает свою работу математике, в которой он был гениальным самоучкой. Один из первых в Европе после Николы Шюке начал оперировать отрицательными числами.

Знаменитый французский математик Рене Декарт в «Геометрии» (1637 год) описывает геометрическое истолкование положительных и отрицательных чисел; положительные числа изображаются на числовой оси точками, лежащими вправо от начала 0, отрицательные - влево. Геометрическое истолкование положительных и отрицательных чисел привело к более ясному пониманию природы отрицательных чисел, способствовало их признанию.

Почти одновременно со Штифелем защищал идею отрицательных чисел Р. Бомбелли Раффаэле (около 1530—1572), итальянский математик и инженер, переоткрывший сочинение Диофанта.

Бомбелли и Жирар, напротив, считали отрицательные числа вполне допустимыми и полезными, в частности, для обозначения недостачи чего-либо. Современное обозначение положительных и отрицательных чисел со знаками « + » и « - » применил немецкий математик Видман. Выражение «ниже, чем ничего» показывает, что Штифель и некоторые другие мысленно воображали положительные и отрицательные числа точками на вертикальной шкале (вроде шкалы термометра). Развитое затем математиком А. Жираром представление об отрицательных числах как о точках на некоторой прямой, располагающихся по другую сторону от нуля, чем положительные, оказалось решающим в обеспечении этим числам прав гражданства, особенно в результате развития метода координат у П. Ферма и Р. Декарта.

Вывод

В своем работе я исследовал историю возникновения отрицательных чисел. В ходе исследования я сделал вывод:

Современная наука встречается с величинами такой сложной природы, что для их изучения приходится изобретать все новые виды чисел.

При введении новых чисел большое значение имеют два обстоятельства:

а) правила действий над ними должны быть полностью определены и не вели к противоречиям;

б) новые системы чисел должны способствовать или решению новых задач, или усовершенствовать уже известные решения.

К настоящем у времени существует семь общепринятых уровней обобщения чисел: натуральные, рациональные, действительные, комплексные, векторные, матричные и трансфинитные числа. Отдельными учеными предлагается считать функции функциональными числами и расширить степень обобщения чисел до двенадцати уровней.

Все эти множества чисел я постараюсь изучить.

Приложение

СТИХОТВОРЕНИЕ

«Сложение отрицательных чисел и чисел с разными знаками»

Если уж захочется вам сложить

Числа отрицательные, нечего тужить:

Надо сумму модулей быстренько узнать,

К ней потом знак «минус» взять да приписать.

Если числа с разными знаками дадут,

Чтоб найти их сумму, все мы тут как тут.

Больший модуль быстро очень выбираем.

Из него мы меньший вычитаем.

Самое же главное - знак не позабыть!

Вы какой поставите? - мы хотим спросить

Вам секрет откроем, проще дела нет,

Знак, где модуль больше, запиши в ответ.

Правила сложения положительных и отрицательных чисел

Минус с минусом сложить,

Можно минус получить.

Если сложишь минус, плюс,

То получится конфуз?!

Знак числа ты выбирай

Что сильнее, не зевай!

Модули их отними,

Да все числа помири!

Правила умножения можно истолковать и таким образом:

«Друг моего друга - мой друг»: + ∙ + = + .

«Враг моего врага - мой друг»: ─ ∙ ─ = +.

«Друг моего врага - мой враг»: + ∙ ─ = ─.

«Враг моего друга - мой враг»: ─ ∙ + = ─.

Знак умножения есть точка, в ней три знака:

Прикрой из них два, третий даст ответ.

Например.

Как определить знак произведения 2∙(-3)?

Закроем руками знаки «плюс» и «минус». Остаётся знак «минус»

Список литературы

    «История древнего мира», 5 класс. Колпаков, Селунская.

    «История математики в древности», Э. Кольман.

    «Справочник школьника». ИД «ВЕСЬ», Санкт-Петербург. 2003 г.

    Большая математическая энциклопедия. Якушева Г.М. и др.

    Вигасин А.А,.Годер Г.И., "История древнего мира" учебник 5 класса, 2001г.

    Википедия. Свободная энциклопедия.

    Возникновение и развитие математической науки: Кн. Для учителя. - М.: Просвещение, 1987.

    Гельфман Э.Г. "Положительные и отрицательные числа", учебное пособие по математике для 6-го класса, 2001.

    Глав. ред. М. Д. Аксёнова. - М.: Аванта+,1998.

    Глейзер Г. И. "История математики в школе", Москва, "Просвещение", 1981 г.

    Детская энциклопедия "Я познаю мир", Москва, "Просвещение", 1995г.

    История математики в школе, IV-VI классы. Г.И. Глейзер, Москва, Просвещение, 1981.

    М.: Филол. О-во «СЛОВО»: ОЛМА-ПРЕСС, 2005.

    Малыгин К.А.

    Математический энциклопедический словарь. М., Сов. энциклопедия, 1988.

    Нурк Э.Р., Тельгмаа А.Э. "Математика 6 класс", Москва, "Просвещение",1989г

    Учебник 5 класс. Виленкин, Жохов, Чесноков, Шварцбурд.

    Фридман Л. М.. "Изучаем математику", учебное издание, 1994 г.

    Э.Г. Гельфман и др., Положительные и отрицательные числа в театре Буратино. Учебное пособие по математике для 6 класса. 3-е издание, испр., - Томск: Издательство Томского университета, 1998г.

    Энциклопедия для детей. Т.11. Математика

Состоящее из положительных (натуральных) чисел, отрицательных чисел и нуля.

Все отрицательные числа, и только они, меньше, чем нуль. На числовой оси отрицательные числа располагаются слева от нуля. Для них, как и для положительных чисел , определено отношение порядка, позволяющее сравнивать одно целое число с другим.

n -n , которое дополняет n до нуля: n + (− n ) = 0 . Оба числа называются противоположными друг для друга. Вычитание целого числа a равносильно сложению с противоположным для него: -a .

Свойства отрицательных чисел

Отрицательные числа подчиняются практически тем же правилам, что и натуральные, но имеют некоторые особенности.

Исторический очерк

Литература

  • Выгодский М. Я. Справочник по элементарной математике. - М.: АСТ, 2003. - ISBN 5-17-009554-6
  • Глейзер Г. И. История математики в школе. - М.: Просвещение, 1964. - 376 с.

Ссылки

Wikimedia Foundation . 2010 .

Смотреть что такое "Отрицательные числа" в других словарях:

    Действительные числа, меньшие нуля, например 2; 0,5; π и т. п. См. Число … Большая советская энциклопедия

    - (величины). Результат последовательных сложений или вычитаний не зависит от порядка, в котором эти действия производятся. Напр. 10 5 + 2 = 10 +2 5. Здесь переставлены не только числа 2 и 5, но и знаки, стоящие перед этими числами. Согласились… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    числа отрицательные - Числа в бухгалтерском учете, которые пишутся красным карандашом или красными чернилами. Тематики бухгалтерский учет … Справочник технического переводчика

    ЧИСЛА, ОТРИЦАТЕЛЬНЫЕ - числа в бухгалтерском учете, которые пишутся красным карандашом или красными чернилами … Большой бухгалтерский словарь

    Множество целых чисел определяется как замыкание множества натуральных чисел относительно арифметических операций сложения (+) и вычитания (). Таким образом, сумма, разность и произведение двух целых чисел есть снова целые числа. Оно состоит из… … Википедия

    Числа, возникающие естественным образом при счёте (как в смысле перечисления, так и в смысле исчисления). Существуют два подхода к определению натуральных чисел числа, используемые при: перечислении (нумеровании) предметов (первый, второй,… … Википедия

    Коэффициенты Е n в разложении Рекуррентная формула для Э. ч. имеет вид (в символической записи, (E + 1)n + (Е 1)n=0, E0 =1. При этом Е 2п+1=0, E4n положительные, E4n+2 отрицательные целые числа для всех n=0, 1, . . .; E2= 1, E4=5, E6=61, E8=1385 … Математическая энциклопедия

    Отрицательное число элемент множества отрицательных чисел, которое (вместе с нулём) появилось в математике при расширении множества натуральных чисел. Цель расширения: обеспечить выполнение операции вычитания для любых чисел. В результате… … Википедия

    Арифметика. Роспись Пинтуриккьо. Апартаменты Борджиа. 1492 1495. Рим, Ватиканские дворцы … Википедия

    Ганс Себальд Бехам. Арифметика. XVI век Арифметика (др. греч. ἀ … Википедия

Книги

  • Математика. 5 класс. Учебная книга и практикум. Положительные и отрицательные числа. В 2 частях. Часть 2. ФГОС, Гельфман Э.Г.. Учебная книга и практикум для 5 класса входят в состав УМК по математике для 5–6 классов, разработанный авторским коллективом под руководством Э. Г. Гельфман и М. А. Холодной в рамках проекта…

В рамках натуральных чисел можно вычесть только меньшее число из большего, а переместительный закон не включает вычитание - например, выражение 3 + 4 − 5 {\displaystyle 3+4-5} допустимо, а выражение с переставленными операндами 3 − 5 + 4 {\displaystyle 3-5+4} недопустимо...

Добавление к натуральным числам отрицательных чисел и нуля делает возможной операцию вычитания для любых пар натуральных чисел. В результате такого расширения получается множество (кольцо) «целых чисел ». При дальнейших расширениях множества чисел рациональными или вещественными числами для них тем же путём получаются соответствующие отрицательные значения. Для комплексных чисел упорядоченность не определена, и понятия «отрицательное число» не существует.

Все отрицательные числа, и только они, меньше, чем ноль. На числовой оси отрицательные числа располагаются слева от нуля. Для них, как и для положительных чисел, определено отношение порядка, позволяющее сравнивать одно целое число с другим.

Для каждого натурального числа n существует одно и только одно отрицательное число, обозначаемое -n , которое дополняет n до нуля:

n + (− n) = 0. {\displaystyle n+\left(-n\right)=0.}

Оба числа называются противоположными друг для друга. Вычитание целого числа a из другого целого числа b равносильно сложению b с противоположным для a :

b − a = b + (− a) . {\displaystyle b-a=b+\left(-a\right).}

Пример: 25 − 75 = − 50. {\displaystyle 25-75=-50.}

Свойства отрицательных чисел

Отрицательные числа подчиняются практически тем же алгебраическим правилам, что и натуральные, но имеют некоторые особенности.

  1. Если любое множество положительных чисел ограничено снизу, то любое множество отрицательных чисел ограничено сверху.
  2. При умножении целых чисел действует правило знаков : произведение чисел с разными знаками отрицательно, с одинаковыми - положительно.
  3. При умножении обеих частей неравенства на отрицательное число знак неравенства меняется на обратный. Например, умножая неравенство 3 −10.

При делении с остатком частное может иметь любой знак, но остаток, по соглашению, всегда неотрицателен (иначе он определяется не однозначно). Например, разделим −24 на 5 с остатком:

− 24 = 5 ⋅ (− 5) + 1 = 5 ⋅ (− 4) − 4 {\displaystyle -24=5\cdot (-5)+1=5\cdot (-4)-4} .

Вариации и обобщения

Понятия положительных и отрицательных чисел можно определить в любом упорядоченном кольце. Чаще всего эти понятия относятся к одной из следующих числовых систем:

Приведенные выше свойства 1-3 имеют место и в общем случае. К комплексным числам понятия «положительный» и «отрицательный» неприменимы.

Исторический очерк

Древний Египет, Вавилон и Древняя Греция не использовали отрицательных чисел, а если получались отрицательные корни уравнений (при вычитании), они отвергались как невозможные. Исключение составлял Диофант, который в III веке уже знал правило знаков и умел умножать отрицательные числа. Однако он рассматривал их лишь как промежуточный этап, полезный для вычисления окончательного, положительного результата.

Впервые отрицательные числа были частично узаконены в Китае, а затем (примерно с VII века) и в Индии, где трактовались как долги (недостача), или, как у Диофанта, признавались как временные значения. Умножение и деление для отрицательных чисел тогда ещё не были определены. Полезность и законность отрицательных чисел утверждались постепенно. Индийский математик Брахмагупта (VII век) уже рассматривал их наравне с положительными.

В Европе признание наступило на тысячу лет позже, да и то долгое время отрицательные числа называли «ложными», «мнимыми» или «абсурдными». Первое описание их в европейской литературе появилось в «Книге абака» Леонарда Пизанского (1202 год), который трактовал отрицательные числа как долг. Бомбелли и Жирар в своих трудах считали отрицательные числа вполне допустимыми и полезными, в частности, для обозначения нехватки чего-либо. Даже в XVII веке Паскаль считал, что 0 − 4 = 0 {\displaystyle 0-4=0} , так как «ничто не может быть меньше, чем ничто» . Отголоском тех времён является то обстоятельство, что в современной арифметике операция вычитания и знак отрицательных чисел обозначаются одним и тем же символом (минус), хотя алгебраически это совершенно разные понятия.

В XVII веке, с появлением аналитической геометрии, отрицательные числа получили наглядное геометрическое представление на числовой оси. С этого момента наступает их полное равноправие. Тем не менее теория отрицательных чисел долго находилась в стадии становления. Оживлённо обсуждалась, например, странная пропорция 1: (− 1) = (− 1) : 1 {\displaystyle 1:(-1)=(-1):1} - в ней первый член слева больше второго, а справа - наоборот, и получается, что большее равно меньшему («парадокс

1. Вопросы, связанные с отрицательными числами являются одним из трудных вопросов для освоения учащимися.

История развития математики показывает, что отрицательные числа значительно труднее дались человеку, это связано с тем, отрицательные числа менее связаны с практической жизнью.

Отрицательные числа возникли в связи с необходимостью выполнения с известными числами. Математики древней Греции не признали отрицательных чисел, они не могли дать им конкретного толкования. Лишь работу Диофанта (3 в. н.э) встречаются преобразования, которые приводят к необходимости выполнения операций над отрицательными числами.

Отрицательные числа появляются лишь в зачаточной форме. Довольно широкое распределение они получили в работах индийских ученых. Положительные числа они называли настоящими, а отрицательные- не настоящими- ложными. Отрицательные числа рассматривали, как долг, а положительные числа как наличные деньги.

Первые правила сложения и вычитания принадлежат индийским ученым. И связаны с трактовкой этих чисел как имущество и долг.

Ученые долго не могли объяснить, дать трактовку произведения двух отрицательных чисел. Почему произведение 2-х долгов есть имущество. Такие ученые как Эйлер, Коми давали свое объяснение правилу произведения чисел, но они приводили к ошибочным результатам.

Немецкий ученый М. Штифель впервые в 1544 г. дал определение отрицательных чисел, как чисел меньших нуля.

Впервые математическую интерпретацию дал Рене Декарт в 1737 г. в книги «Аналитическая геометрия». Отрицательные числа он рассматривал как самостоятельное, расположенное на оси ОХ влево от начало координат. Однако он эти числа назвал ложными. Всеобщее признание отрицательные числа получили в первой половине 21 века, так отрицательные числа вошли в историю математики.

2. Различные приемы введения отрицательных чисел. В учебной литературе можно отметить 3 способа введения отрицательных чисел.

1) Рассматриваются случаи, когда вычисление на множестве положительных чисел ложно.

2) Рассматривают векторы расположенные на одной прямой, необходимость охарактеризовать не только их длину, но и направление приводит к понятию положительных и отрицательных чисел.

3) Введение отрицательных чисел посредством расположения изменяющихся величин в противоположных направлениях.

Методика введения отрицательного числа.

Прежде чем дать понятие об отрицательном числе необходимо показать на конкретных примерах , что известно уч-ся чисел недостаточно для характеристики положения точки на прямой к началу отсчета.

На достаточном количестве примеров надо показать неудобства понятия типа вправо или влево, вверх или вниз начертить числовую ось. Необходимо отложить начало отсчета и чтоб для определенности таких шкал, которые находятся вправо со знаком плюс, влево с противоположным знаком- минус.

В учебнике рассматривается достаточное число примеров, показывающих о целесообразности использования определенных знаков для обозначения направления противоположности движения. Для понятия введения отрицательного числа необходимо пользоваться демонстративным термометром и другими пособиями.

Знакомству с противоположными числами способствует изучение центра симметрии.

Понятие о противоположных числах связывается симметричными точками. В тоже время введение этого понятия основывается с геометрическим истолкованием положительных и отрицательных чисел.

В пункте противоположных чисел вводится определение целых чисел. Натуральные числа, противоположные числа, нуль- называют целыми числами. Модуль числа- понятие модуль числа дает от начала отсчета до точки соответствующему числу. Следует обратить внимание учащихся как мотивировать определение модуля числа.

В учебниках понятие модуля числа вводится путем рассмотрения примеров, поясняют как находить модуль числа. Поясняется, что модуль числа не может быть отрицательным ибо модуль числа это расстояние- обращается внимание, что для положительного числа модуль равен самому числу. Модуль отрицательного числа равен противоположному числу.

Сравнение чисел.

Соотношения равенства и неравенства между положительными и отрицательными числами вводится по определению, они не могут быть получены путем доказательства, причем очень важно показать учащимся целесообразность определения на конкретных примерах и геометрических образах.

Учащиеся должны на столько прочно усвоить расположение чисел на числовой прямой, чтобы это могло служить основным средством сравнения чисел. Иногда возникают трудности в сравнении отрицательных чисел, чтобы преодолеть их, необходимо рассмотреть их на числовой прямой.

Действия над отрицательными и положительными числами.

Основное, что надо учитывать учителю при рассмотрении этого материала – это действия сложения и вычитания над положительными и отрицательными числами вводится по определению, причем формулировки этих определений должны включать в себя ранее известные учащимся понятия об этих действиях. Вычитание и деление определяются как обратные сложению и умножению.

В учебнике отдельно дается определение действия сложения чисел с разными знаками, формулировки этих правил содержат указание на следующие действия. В учебнике большое время уделяется к тому как подойти к действию сложению. Основное внимание уделяется к рассмотрению конкретных задач, обращаясь при этом к координатной прямой.

Каким бы путем не вводилось правило сложение учащимся должно быть ясно, что ничто не доказывается при рассмотрении следующих примеров.

Примеры признаны лишь иллюстрировать целесообразность правил. Учащиеся должны овладеть навыками выполнения сложения 2-х отрицательных чисел с разными знаками, противоположных чисел, нуля с положительными и отрицательными числами.

Рассматривая свойства действий важно показать учащимся, что при установленных определениях действий сложения и вычитания чисел сохраняется все те законы которые имели место для положительных чисел.

Учащимся дается формулировка переместительного и сочетательного законов запись каждого из них с помощью букв.

Вычитание отрицательных чисел определяются как действие обратное сложению. Вычитание сводится к прибавлению противоположного числа.

Умножение положительных и отрицательных чисел представляет наибольшую трудность, трудность заключается в том, что учащейся испытывают потребность в доказательстве правил знаков при умножение, а учитель должен убедить учащихся, что такого доказательства нельзя искать или требовать, таким образом действие умножения вводится по определению, которое можно ввести по разному и по разному истолковать правило знаков. Сложения и умножения имеют много общего, однако трактовка правил умножения вызывает больше трудности.

Рассмотрим объяснения правил умножения является рассмотрение конкретных задач, решение которых требует вычисление по формуле а в, при различных а и в. недостатком этого метода является, то что они доказывают правило умножения.

Многие авторы придерживаются пути, когда в начале дается формулировка правил умножения, затем оно поясняется на примерах, задачах. Учащийся убеждаются на конкретном математическом в практичной целесообразности введенного определения. обычно в учебниках формулировки правил умножения чисел с разными знаками и правил умножения натуральных чисел представляет расписания рядов примеров.

При этом используется положение о том, что если изменить знак одного из множителей, то изменится знак произведения.

Правило формулируется удобным для использования вида. Необходимо обратить внимание учащихся на условия равенство произведения нулю.

Деление положительных, отрицательных чисел рассматривается как действие обратное умножению. Учащемуся сообщается, что деление положительных и отрицательных чисел имеет тот же смысл, что и деление положительных чисел. Важно обратить внимание на законы вычисления и умножения выражений.

Так же как и в случая сложения, правило сложения и умножения натуральных чисел может быть выведены из умножения чисел. Считая, что правило знаков для суммы известно.

В 6 классе в теме рациональные числа вводятся памяти отрицательные числа, которое может быть записано в виде дроби. Расписывается множество рациональных чисел можно сбить внимание, что когда выполнимо:, +, *, - на число не равное нулю.

При вычитании или выполни действий учащийся получают числа того же множества и это множество обладает свойством замкнутости по отношению к действиям первой и второй степени. Для сложения справедливы переместительный и сочетательный законы имеется нейтральный элемент, имеется противоположный элемент.

Для умножения справедливы первый распределительный и сочетательный закон, имеется нейтральный элемент 1, противоположный элемент ().

Практическое занятие №2

Тема: Изучение функции в ШКМ

1. Методика введения понятия функции.

2. Методика изучения отдельных функций

3. Виды функций, изучаемых в основной школе

Литература: , . Дополнительная литература I.


Сейчас мы разберем положительные и отрицательные числа . Сначала дадим определения, введем обозначения, после чего приведем примеры положительных и отрицательных чисел. Также остановимся на смысловой нагрузке, которую несут в себе положительные и отрицательные числа.

Навигация по странице.

Положительные и отрицательные числа – определения и примеры

Дать определение положительных и отрицательных чисел нам поможет . Для удобства будем считать, что она расположена горизонтально и направлена слева направо.

Определение.

Числа, которые соответствуют точкам координатной прямой, лежащим правее начала отсчета, называют положительными .

Определение.

Числа, которые соответствуют точкам координатной прямой, лежащим левее начала отсчета называю отрицательными .

Число нуль, соответствующее началу отсчета, не является ни положительным, ни отрицательным числом.

Из определения отрицательных и положительных чисел следует, что множество всех отрицательных чисел представляет собой множество чисел, противоположных всем положительным числам (при необходимости смотрите статью противоположные числа). Следовательно, отрицательные числа всегда записываются со знаком минус.

Теперь, зная определения положительных и отрицательных чисел, мы с легкостью можем привести примеры положительных и отрицательных чисел . Примерами положительных чисел являются натуральные числа 5 , 792 и 101 330 , да и вообще любое натуральное число является положительным. Примерами положительных рациональных чисел являются числа , 4,67 и 0,(12)=0,121212... , а отрицательных – числа , −11 , −51,51 и −3,(3) . В качестве примеров положительных иррациональных чисел можно привести число пи, число e , и бесконечную непериодическую десятичную дробь 809,030030003… , а примерами отрицательных иррациональных чисел являются числа минус пи, минус e и число, равное . Следует отметить, что в последнем примере отнюдь не очевидно, что значение выражения является отрицательным числом. Чтобы это узнать наверняка, нужно получить значение этого выражения в виде десятичной дроби, а как это делается, мы расскажем в статье сравнение действительных чисел .

Иногда перед положительными числами записывается знак плюс, также как перед отрицательными числами записывается знак минус. В этих случаях следует знать, что +5=5 , и т.п. То есть, +5 и 5 и т.п. – это одно и то же число, но по-разному обозначенное. Более того, можно встретить определение положительных и отрицательных чисел, на основании знака плюс или минус.

Определение.

Числа со знаком плюс называют положительными , а со знаком минус – отрицательными .

Существует еще одно определение положительных и отрицательных чисел, основанное на сравнении чисел. Чтобы дать это определение, достаточно лишь вспомнить, что точка на координатной прямой, соответствующая большему числу, лежит правее точки, соответствующей меньшему числу.

Определение.

Положительные числа – это числа, которые больше нуля, а отрицательные числа – это числа, меньшие нуля.

Таким образом, нуль как бы отделяет положительные числа от отрицательных.

Конечно же, следует еще остановиться на правилах чтения положительных и отрицательных чисел. Если число записано со знаком + или −, то произносят название знака, после чего произносят число. Например, +8 читается как плюс восемь, а - как минус одна целая две пятых. Названия знаков + и − не склоняются по падежам. Примером правильного произношения является фраза «a равно минус трем» (не минусу трем).

Интерпретация положительных и отрицательных чисел

Мы уже достаточно долго описываем положительные и отрицательные числа. Однако неплохо было бы знать, какой смысл они несут в себе? Давайте разберемся с этим вопросом.

Положительные числа можно интерпретировать как приход, как прибавку, как увеличение какой-либо величины и тому подобное. Отрицательные числа, в свою очередь, означают строго противоположное – расход, недостаток, долг, уменьшение какой-либо величины и т.п. Разберемся с этим на примерах.

Можно сказать, что мы обладаем 3 предметами. Здесь положительное число 3 указывает количество находящихся у нас предметов. А как можно интерпретировать отрицательное число −3 ? Например, число −3 может означать, что мы должны кому-нибудь отдать 3 предмета, которых у нас даже нет в наличии. Аналогично можно сказать, что в кассе нам выдали 3,45 тысяч рублей. То есть, число 3,45 связано с нашим приходом. В свою очередь отрицательное число −3,45 будет указывать на уменьшение денег в кассе, выдавшей эти деньги нам. То есть, −3,45 – это расход. Еще пример: повышение температуры на 17,3 градуса можно описать положительным числом +17,3 , а понижение температуры на 2,4 можно описать с помощью отрицательного числа, как изменение температуры на −2,4 градуса.

Положительные и отрицательные числа часто используются для описания значений каких-либо величин в различных измерительных приборах. Самым доступным примером является прибор для измерения температур – термометр - со шкалой, на которой записаны и положительные и отрицательные числа. Часто отрицательные числа изображают синим цветом (он символизирует снег, лед, а при температуре ниже нуля градусов Цельсия начинает замерзать вода), а положительные числа записывают красным цветом (цвет огня, солнца, при температуре выше нуля градусов начинает таять лед). Запись положительных и отрицательных чисел красным и синим цветом используют и в других случаях, когда нужно особо выделить знак чисел.

Список литературы.

  • Виленкин Н.Я. и др. Математика. 6 класс: учебник для общеобразовательных учреждений.

Натуральные числа, противоположные им числа и число 0 называются целыми числами. Положительные числа (целые и дробные), отрицательные числа (целые и дробные) и число 0 составляют группу рациональных чисел .

Рациональные числа обозначаются большой латинской буквой R . Число 0 относится к целым рациональным числам. С натуральными и дробными положительными числами мы ознакомились ранее. Рассмотрим подробнее отрицательные числа в составе рациональных чисел.

Отрицательное число с древних времен ассоциируется со словом «долг», тогда как положительное число можно ассоциировать со словами «наличие» или «доход». Значит, положительные целые и дробные числа при вычислениях — это то, что мы имеем, а отрицательные целые и дробные числа — это то, что составляет долг. Соответственно, результат вычислений — это разность между имеющимся количеством и нашими долгами.

Отрицательные целые и дробные числа записываются со знаком «минус» («-») перед числом. Численная величина отрицательного числа - это его модуль. Соответственно, модуль числа — это значение числа (и положительного, и отрицательного) со знаком плюс. Модуль числа записывается так: |2|; |-2|.

Каждому рациональному числу на числовой оси соответствует единственная точка. Рассмотрим числовую ось (рисунок внизу), обозначим на ней точку О .

Точке О поставим в соответствие число 0. Число 0 служит границей между положительными и отрицательными числами : справа от 0 - положительные числа , величина которых изменяется от 0 до плюс бесконечности, а слева от 0 - отрицательные числа , величина которых тоже изменяется от 0 до минус бесконечности.

Правило. Всякое число, стоящее на числовой оси правее, больше числа, стоящего левее.

Исходя из этого правила, положительные числа растут слева направо, а отрицательные убывают справа налево (при этом модуль отрицательного числа увеличивается).

Свойства чисел на числовой оси

    Всякое положительное число и 0 больше любого отрицательного числа.

    Всякое положительное число больше 0. Всякое отрицательное число меньше 0.

    Всякое отрицательное число меньше положительного числа. Положительное или отрицательное число, стоящее правее, больше положительного или отрицательного числа, стоящего левее на числовой оси.

Определение. Числа, которые отличаются друг от друга только знаком, называются противоположными.

Например, числа 2 и -2, 6 и -6. -10 и 10. Противоположные числа расположены на числовой оси в противоположных направлениях от точки О, но на одинаковом расстоянии от нее.

Дробные числа, представляющие собой в записи обыкновенную или десятичную дробь, подчиняются тем же правилам на числовой оси, что и целые числа. Из двух дробей больше та, которая стоит на числовой оси правее; отрицательные дроби меньше положительных дробей; всякая положительная дробь больше 0; всякая отрицательная дробь меньше 0.

Поделиться: