Основной белок миелина. Маркеры нарушений нервной системы. Что означают результаты

ЭКСПЕРИМЕНТАЛЬНЫЕ СТАТЬИ

Анализ фрагментации основного белка миелина под действием протеасомы

А. В. Бачева1#, А. А. Белогуров2, Н. А. Пономаренко2, В. Д. Кнорре2, В. М. Говорун2,

М. В. Серебрякова3, А. Г. Габибов1,2

1 Химический факультет Московского Государственного Университета имени М. В. Ломоносова, Москва

2 Институт биоорганической химии им. академиков М. М. Шемякина и Ю. А. Овчинникова РАН, Москва

3 Протеомный центр РАМН, НИИ Физико-химической медицины Росздрава РФ # e-mail: [email protected]

РЕФЕРАТ Протеасома - это высокомолекулярный белковый комплекс, служащий для направленной деградации белков в эукариотических клетках. Одной из функций протеасом является генерация пептидов, которые затем экспонируются на клеточной мембране с помощью молекул комплексов гистосовместимости как первого, так и второго класса. Есть все основания полагать, что протеасома принимает непосредственное участие в процессе специфической деградации основного белка миелина (ОБМ), составляющего около 30 % всех белков миелиновой оболочки аксонов нейронов. Детали этого механизма остаются невыясненными. В представленной работе изучены особенности специфической деградации ОБМ протеасомой.

Нами было продемонстрировано, что основной белок миелина (не подвергавшийся убиквитинилированию) является хорошим субстратом как для 20S, так и для 26S протеасомы. Впервые были определены сайты протеолиза ОБМ протеасомой из мозга мышей линий Ва1Ь/С и SJL и показаны значительные различия в паттерне деградации данного нейроантигена, что может свидетельствовать о лучшей презентации фрагментов основного белка миелина на комплексах гистосовместимости в случае мышей, предрасположенных к развитию экспериментального аутоиммунного энцефаломиелита.

ВВЕДЕНИЕ

Рассеянный склероз (РС) - хроническое нейродегенера-тивное заболевание аутоиммунной природы - представляет собой острую медико-социальную проблему, поскольку, как правило, поражает лиц молодого и среднего возраста. Проблема лечения РС остается далекой от разрешения, на сегодняшний день существуют лекарственные препараты, способные в некоторой степени замедлить течение РС, но не излечивать от этой патологии. Деградация нервных волокон, происходящая при рассеянном склерозе, протекает вследствие разрушения миелиновой оболочки нейронов. Одной из биохимических характеристик, которая отличает миелин от других биологических мембран, является высокое соотношение липид/белок. Белки составляют от 25 до 30 % массы сухого вещества миелиновой оболочки. Около 30 % всех белков миелина составляют три изоформы т. н. основного белка миелина (ОБМ). ОБМ является одним из основных аутоантигенов при РС. Ранее нами и другими исследователями было показано, что в деградации ОБМ могут принимать участие каталитические антитела , а также некоторые проте-

азы . Известно, что в любой эукариотической клетке существует специализированная органелла для направленной деградации белков - протеасома, представляющая собой высокомолекулярный белковый комплекс. Одной из функций протеасом является генерация пептидов, которые затем экспонируются на клеточной мембране с помощью молекул комплексов гистосовместимости (МНС) как первого, так и второго класса . Есть все основания полагать, что протеасома принимает непосредственное участие в процессе специфической деградации ОБМ. Детали этого механизма остаются невыясненными. В представленной работе нами были изучены особенности специфической деградации ОБМ протеасомой.

Известно, что 20S протеасома (мультикаталический протеиназный комплекс) - это олигомерная высокомолекулярная (700 кДа) протеиназа, которая может быть выделена индивидуально. Данный комплекс также является каталитическим ядром 26S протеасомы, в составе которой присутствуют одна или две регуляторных 19S субъединицы. Было показано, что и 20S и 26S протеасомы способны деградировать ОБМ . Вопрос о сайт-специфичности

BpeWR. МИНУТЫ

Рис. 1. Зависимость степени гидролиза ОБМ протеасомой от времени. Обозначения: о - 20S протеасома, - 26S протеасома, выделенные из печени аутбредных мышей

деградации ОБМ протеасомой оставался открытым. Кроме того, известно, что при многих воспалительных патологических процессах протеазный комплекс (конститутивная протеасома) переходит в форму иммунопротеасомы, обладающей альтернативной специфичностью и каталитической эффективностью по отношению к процессингу внутриклеточных белков. Скорее всего, это «переключение» имеет непосредственное отношению к различной презентации антигенов в норме и патологии. Паттерн деградации ОБМ иммунопротеасомой до настоящего времени изучен не был.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Протеасома была выделена и очищена по методу, описанному в . Сначала была исследована деградация ОБМ (изоформа с молекулярной массой 18.5 кДа из мозга быка) полным 26S комплексом и каталитической 20S субъединицей, выделенными из печени аутбредных мышей. Как показано на рис. 1, инкубация ОБМ как с 20S, так и с 26S протеасомой приводила к постепенной деградации ОБМ. Уже через 45 мин 20S протеасома полностью гидролизовала основной белок миелина, в то время как 26S протеасо-ме на это требовалось 85 мин. Такое различие в скоростях можно отнести к разному количеству протеасомы: в случае 20S протеасомы соотношение фермент/субстрат составило 2.7/1 (по белку, мкг/мкг) или 1/14.5 (моль/моль), а в случае 26S соотношение фермент/субстрат составило 1/1 (по белку, мкг/мкг) или 1/110 (моль/моль). Количество протеасомы оценивали по методу Лоури, используя бычий сывороточный альбумин в качестве стандарта.

Гидролизаты ОБМ, полученные под действием 20S и 26S комплексов из печени аутбредных мышей, были разделены на фракции методом обращенно-фазовой ВЭЖХ на колонке С4 (Waters, DeltaPak, 300 А). Наблюдаются некоторые отличия в профилях элюции, в частности, в некоторых пиках, совпадающих для 20S и 26S протеасом, содержится разное количество вещества, кроме того, при гидролизе 26S протеасомой появляются новые фракции. Таким образом,

паттерн деградации ОБМ 26S протеасомой несколько изменен по сравнению с таковым для 20S протеасомы. Отмеченные различия можно объяснить разной доступностью для протеолиза участков ОБМ, находящихся на поверхности белковой глобулы и в глубине молекулы, а также имеющих выраженную вторичную структуру. Для 26S протеасомы доступность разных участков ОБМ не имеет большого значения, поскольку в составе 19S субчастицы есть субъединицы, отвечающие за денатурацию молекул белка, которые будут подвергнуты деградации.

Пул протеасом неоднороден и состоит из макромоле-кулярных комплексов нескольких типов, причем каталитические субъединицы могут относиться к т. н. конститутивным (ßl, ß2 и ß5) или иммунным (ßli, ß2i и ß5i) (рис. 2). Шесть каталитических субъединиц протеасомы обладают тремя типами активности, а именно: химотрипсино-подобной (гидролиз после гидрофобных и ароматических аминокислот Leu, Tyr, Phe), трипсиноподобной (гидролиз после положительно заряженных Lys и Arg) и каспазо-подобной (гидролиз после отрицательно заряженных Asp и Glu) .

Соотношение конститутивная протеасома/иммунопро-теасома имеет ярко выраженную тканеспецифичность и в значительной степени зависит от иммунного статуса организма. Так, например, в головном мозге в норме более 90 % протеасом - конститутивные, а в селезенке около 9095 % протеасом являются иммунопротеасомами. Кроме того, в любых тканях под действием гамма-интерферона интенсивно нарабатываются иммуносубъединицы, которые встраиваются во вновь собранные мультикаталити-ческие комплексы . Ранее было показано, что замены каталитических субъединиц на иммунные приводят к изменению специфичности гидролиза и увеличению его скорости. Иммунопротеасома практически теряет способность

sm ■ . з1 »I Ri-

Конститутивная ^ ■Шф Иммуно

"шШЖМ TSf"fA qgjMSb-""

Рис. 2. Равновесие протеасома - иммунопротеасома. Иммунные каталитические субъединицы нарабатываются под действием гамма-интерферона

Рис. 3. Аминокислотная последовательность ОБМ. Стрелками указаны протео-литические пептиды, определенные с помощью хромато-масс-спектрометрии в гидролизатах ОБМ протеасомой из мозга мышей линии SJL/J (верхняя часть рисунка) и Ва1Ь/С (нижняя часть рисунка). Толщина стрелок обозначает частоту встречаемости соответствующего пептида. Цветными прямоугольниками выделены иммунодоминантные районы ОБМ

Рис. 4. Распределение по длинам пептидов, обнаруженных в гидролизатах ОБМ пулами протеасом из мозга мышей линии

б) SJL/J. Столбиками на диаграмме представлены экспериментальные значения ионного тока для пептидов данной длины, полученные методом LC-MS масс-спектрометрии

гидролизовать пептидные связи после остатков аспарагиновой и глутаминовой кислот (каспазоподобная активность), зато значительно чаще происходит гидролиз после гидрофобных и особенно разветвленных гидрофобных аминокислотных остатков. Таким образом, под действием иммунопротеасомы получается большее количество пептидов, несущих гидрофобные аминокислоты на С-конце. Поскольку С-концевые гидрофобные аминокислоты являются важными якорными фрагментами для связывания с молекулами I класса главного комплекса гистосовместимости, следовательно, изменение в специфичности гидролиза приводит к увеличению выработки пептидов, образующих комплексы с молекулами MHC. Фрагменты, связанные с молекулами МНС, презентируются на внешней мембране клеткам иммунной системы. Таким образом, клетки, содержащие иммунопротеасому, будут более эффективно презентировать свои антигены.

Кроме того, известно, что альфа-субъединицы каталитической 20S субчастицы протеасомы действуют как ворота, формируя аксиальный канал, регулирующий вход и выход белков и продуктов их деградации. Закрытие канала может, таким образом, способствовать более полной деградации субстратов, поскольку препятствует выходу

частично гидролизованных полипептидов . Было также продемонстрировано , что открывание канала сильно влияет на кинетику протеолиза и распределение по длине гидролитических фрагментов, полученных in vitro. Если канал открыт, то скорость гидролиза увеличивается, но при этом средняя длина получающихся фрагментов также увеличивается на 40 %. Таким образом, более высокая скорость работы иммунопротеасомы должна приводить к более длинным пептидам - продуктам деградации, которые будут лучше связываться с молекулами МНС и, следовательно, более эффективно представляться на поверхности клетки.

Известно, что мыши линии SJL генетически предрасположены к развитию экспериментального аутоиммунного энцефаломиелита. Данная патология является животной моделью рассеянного склероза. С помощью иммуноблоттинга мы изучили состав пула протеасом в головном мозге мышей этой линии и показали, что содержание иммунопротеасом повышено по сравнению с мышами линии Balb/C (данные не приведены). Поэтому на следующем этапе из мозга мышей линии Balb/C и линии SJL была выделена 26S протеасома и изучен протеолиз ОБМ этими образцами протеасом.

Гидролизаты ОБМ, полученные под действием протеасом,

выделенных из мозга мышей этих двух линий, были исследованы методом LC-MS (высокоэффективная жидкостная хроматография с детекцией методом масс-спектрометрии). На рис. 3 приведена последовательность основного белка миелина с указанием мажорных фрагментов, продуцируемых пулами протеасом из разных источников. Толщина соответствующих стрелок демонстрирует относительное количество пептида в гидролизате при анализе.

В аминокислотной последовательности ОБМ выделяют следующие области, соответствующие иммунодоминант-ным районам белка: 12-31, 82-98, 110-128 и 144-169, причем фрагмент 85-98 представляет собой т.н. энцефалитогенный эпитоп.

Необходимо отметить, что деградация ОБМ протеасо-мой из печени аутбредных мышей, как полным комплексом, так и каталитической частью, не приводила к выщеплению иммуногенных пептидов, все они подвергались дальнейшей фрагментации внутри каталитической камеры протеасомы.

В гидролизате ОБМ протеасомой из мозга мышей обеих линий практически единственным сайтом гидролиза, где протеасома проявляла свою каспазоподобную активность, была связь между аминокислотными остатками Asp81-Glu82, близкая к началу энцефалитогенного пептида.

Характер гидролиза ОБМ протеасомами, выделенными из головного мозга мышей линии SJL и Balb/C, был различен. У мышей аутоиммунной линии генерируемые эпитопы существенно лучше колокализуются с иммунодоминантны-ми фрагментами белка. При действии данного пула на ОБМ содержание фрагмента энцефалитогенного пептида составляет до четверти всех получаемых фрагментов гидролиза. У мышей стандартной линии Balb/C - в два раза меньше. Кроме того, полученные фрагменты существенно хуже соотносятся с областями узнавания комплексов гистосовместимости второго класса.

На рис. 4 представлено распределение по длинам пептидов в соответствующих гидролизатах. По оси ординат представлены экспериментальные значения ионного тока для пептидов данной длины, полученные методом LC-MS. Из рисунка видно, что максимум распределения приходится на пептиды длиной 8 аминокислот в случае протеасом из головного мозга мышей как линии SJL, так и Balb/C. Однако относительное значение среднего ионного тока в мак-

симуме сильно различается, что свидетельствует о существенно большем количестве фрагментов данной длины в случае мышей аутоиммунной линии. В гидролизатах превалируют пептиды с четным числом аминокислотных остатков, ни в одном из них не было обнаружено пептидов короче четырех аминокислотных остатков. Эти данные согласуются с описанными в литературе , а также с тем, что одной из главных ролей протеасомы в клетке является генерация пептидов для последующей презентации на молекулах МНС I класса, на которые могут загружаться пептиды длиной до 10 аминокислотных остатков. Присутствующие в гидролизатах более длинные пептиды могут затем расщепляться до фрагментов меньшей длины и представляться на молекулах МНС I класса, а также участвовать в презентации на молекулах МНС II класса .

Таким образом, в настоящей работе показано, что 20S и 26S протеасомы способны гидролизовать основной белок миелина, при этом молярное соотношение протеасома/ОБМ составило 1 /14.5 для 20S и 1/110 для 26S, время полного гидролиза 45 мин и 85 мин соответственно. После разделения гидролизатов методом LC-MS массы фрагментов были определены методом MALDI-масс-спектрометрии, и, после анализа аминокислотной последовательности ОБМ, идентифицированы сайты протеолиза.

Нами было продемонстрировано, что основной белок миелина (не подвергавшийся убиквитинилированию) является хорошим субстратом как для 20S, так и для 26S протеасомы. Впервые были определены сайты протеоли-за ОБМ протеасомой из мозга мышей линий Balb/C и SJL и показаны значительные различия в паттерне деградации данного нейроантигена, что может свидетельствовать о лучшей презентации фрагментов основного белка миелина на комплексах гистосовместимости в случае мышей, предрасположенных к развитию экспериментального аутоиммунного энцефаломиелита.

Работа была поддержана грантами РФФИ 07-04-12100-офи, 09-04-01546-а, 07-04-92168-НЦНИ_а,

NATO SFPP 982833 и программой президиума РАН фундаментальные науки - медицине 2008 г.

Список литературы

1. Ponomarenko, N.A., Durova, O.M., Vorobiev, I.I., Aleksandrova, E.A., Telegin, G.B., Chamborant, O.A., Sidorik, L.L., Suchkov, S.V., Alekberova, Z.S., Gnuchev, N.V., Gabibov, A.G. // J. Immunol. Methods, 2002. V. 269, P. 197- 211.

2. Ponomarenko, N. A., Durova, O. M., Vorobiev, I. I., Belogurov, A. A., Telegin, G. B., Suchkov, S. V., Kiselev, S. L., Lagarkova, M. A., Govorun, V. M., Serebryakova, M. V., Gabibov, A.G. // Proc. Natl. Acad. Sci. USA 2006. V. 103, P. 281-286.

3. Belogurov, A.A. Jr., Kurkova, I.N., Friboulet, A., Thomas, D., Misikov, V.K., Zakharova, M.Y., Suchkov, S.V., Kotov, S.V., Alehin, A.I., Avalle, B., Souslova, E.A., Morse, H.C. 3rd., Gabibov, A.G., Ponomarenko, N.A. // J. Immunol., 2008. V. 180, P. 1258-1267.

4. Polosukhina, D. I., Kanyshkova, T. G., Doronin, B. M., Tyshkevich, O. B., Buneva, V. N.. Boiko, A. N., Gusev E. I., Nevinsky, G. A., Favorova, O. O. // Immunol Lett., 2006. V. 103, P. 75-81.

5. Белогуров, А. А., Куркова, И. Н., Мисиков, В. К., Сучков, С. В., Телегин, Г. Б., Алехин, А. И., Гончаров, Н. Г., Кнорре, В. Д., Габибов, А. Г., Пономаренко, Н. А. // Доклады Академии Наук, 2007. Т. 413, С. 408-411.

6. Pritzker, L. B., Joshi, S., Gowan, J. J., Harauz, G., Moscarello, M. A., // Biochemistry,

2000. V. 39, P. 5374-5381.

7. Schaecher, K. E., Shields, D. C., Banik. N. L. // Neurochemical Research, 2001. V. 26, P 731-737.

8. Medveczky, P., Antal, J., Patthy, A., Kekesi, K., Juhasz, G., Szilagyi, L., Graf, L. // FEBS Lett, 2006. V. 580, P 545-552.

9. D"Souza, C. A., Moscarello, M. A. // Neurochem Res, 2006. V. 31, P 1045-1054.

10. Tewari, M. K., Sinnthamby, G., Rajagopal, D., Eiseinlohr L. C., // Nature Imm, 2005. V.

6, N. 3, P 287-294.

11. Lucas, J., Lobo, D., Terry, E., Hogan, E. L., Banik N. L. // Neurochem. Res., 1992. V. 17,

12. Akaishi, T., Shiomi, T., Sawada, H., Yokosawa, H. // Brain Research, 1996. V. 722, P 139-144

13. Абрамова, Е. Б., Астахова, Т. М., Ерохов, П. А., Шарова, Н. П. // Известия РАН, серия биологическая, 2004. Т. 2, С. 150-156.

14. Orlowski, M., Cardozo, C., Michaud, C. // Biochemistry, 1993. V. 32, P 1563-1572.

15. Namiki, S., Nakamura, T., Oshima, S., Yamazaki, M., Sekine, Y., Tsuchiya, K., Okamoto, R., Kanai, T., Watanabe, M. // FEBS Lett, 2005. V. 579, P. 2781-2787.

16. Kisselev, A. F., Kaganovich, D., Goldberg, A. L. // J. Biol. Chem., 2002. V. 277, P. 22260-22270.

17. Kohler, A., Cascio, P., Leggett, D. S., Woo, K. M., Goldberg, A. L., Finley, D. // Mol. Cell.,

2001. V. 7, P. 1143-1152.

18. Mishto, M., Luciani, F., Holzhutter, H.G., Bellavista, E., Santoro, A., Textoris-Taube, K., Franceschi, C., Kloetzel, PM., Zaikin, A. // J. Biol. Chem., 2008. V. 377, P. 1607-1617.

Основной белок миелина (ОБМ) - один из главных белковых компонентов миелина центральной нервной системы , составляющий около 30% общего содержания протеинов в миелине . ОБМ не является интегральным мембранным белком. Различают его растворимую фракцию, присутствующую в цитоплазме олигодендроцитов перед включением в мембраны миелина, и нерастворимую, входящую в состав миелина. В миелине ОБМ локализован с цитоплазматической стороны элементарной мембраны [ Davies L., Sonston G. 1974 ].

ОБМ играет важную роль в организации, сборке и поддержании структурной целостности миелина. Выделены участки белка, стимулирующие рост астроглии (полипептидная цепочка 44-59), усиливающие синтез элементов соединительной ткани (полипептидная цепочка 44-166) [ Shefflld W., Kim S. 1977 ]. Установлено, что ОБМ инактивирует ряд ингибиторов сериновых протеиназ - антитрипсина и микроглобулина , обладает лектиноподобной активностью, специфической к галактозным и галактозаминовым остаткам [ Lisak R.P., Zweiman D. 1977 ].

Парентеральное введение ОБМ вызывает развитие аллергического лейкоэнцефалита , сопровождающегося диффузной демиелинизацией [ Жаботинский Ю.М. 1975 ]. Было установлено, что разные пептидные фрагменты молекулы ОБМ могут проявлять энцефалитогенные свойства. Наиболее вероятным носителем энцефалитогенной детерминанты всего белка является нонапептид с последовательностью аминокислот 114-122 (-Phe-Ser-Trp-Gly-Ala-Gly-Gln-Arg-) [ Хохлов А.П., Баскаева Т.С. 1986 ].

Генная мутация, ведущая к недостаточному синтезу ОБМ у экспериментальных животных, приводит к развитию демиелинизирующего процесса в мозге и появлению гиперкинезов (модель "трясущихся" мышей) [ Ulrich J. 1993 ]. Введение белка на ранних стадиях эмбриогенеза в зародыш трансгенных животных предотвращает развитие характерной неврологической симптоматики и раннюю смертность [ Ulrich J. 1993 ].

Все открытые свойства ОБМ позволяют связать нарушения его метаболизма с развитием демиелинизирующего процесса. В связи с этим определение ОБМ и антител к нему проводили в основном у больных с рассеянным склерозом и другими демиелинизирующими заболеваниями . Деструкция белого вещества мозга сопровождается выходом ОБМ из пораженной ткани и накоплением его в цереброспинальной жидкости, в связи с чем уровень белка может являться чувствительным индикатором выраженности патологического процесса. Проникая через гематоэнцефалический барьер, ОБМ и его фрагменты стимулируют синтез антител к компонентам миелина, что поддерживает течение заболевания.

Исследования ОБМ при сосудистой патологии головного мозга фрагментарны. Экспериментально показано, что априорная сенсибилизация к ОБМ значительно ухудшает прогноз инсульта и увеличивает размеры инфаркта мозга . В клиническом исследовании J. Palfreyman с соавт. [ Palfreyman J. 1979 ] выявлено увеличение концентрации ОБМ в сыворотке крови больных с острыми нарушениями мозгового кровообращения, сохранявшееся на протяжении первых 7 дней заболевания. Отмечена корреляция между уровнем ОБМ в сыворотке крови и прогнозом инсульта.

Все липиды, обнаруженные в мозге крысы, присутствуют и в миелине, т. е. нет липидов, локализованных исключительно в немиелиновых структурах (за исключением специфического митохондриального липида дифосфатидилглицерола). Верно и обратное - нет таких липидов миелина, которые не были бы обнаружены в других субклеточных фракциях мозга.

Цереброзид - наиболее типичный компонент миелина. За исключением самого раннего периода развития организма, концентрация цереброзида в мозге прямо пропорциональна количеству в нем миелина. Только 1/5 общего содержания галактолипидов в миелине встречается в сульфатированной форме. Цереброзиды и сульфатиды играют важную роль в обеспечении стабильности миелина.

Для миелина также характерен высокий уровень его главных липидов - холестерина, общих галактолипидов и содержащего этаноламин плазмалогена. Установлено, что до 70% холестерина мозга находится в миелине. Поскольку почти половина белого вещества мозга может состоять из миелина, очевидно, что в мозге содержится наибольшее количество холестерина по сравнению с другими органами. Высокая концентрация холестерина в мозге, особенно в миелине, определяется основной функцией нейрональной ткани - генерировать и проводить нервные импульсы. Большое содержание холестерина в миелине и своеобразие его структуры приводят к уменьшению ионной утечки через мембрану нейрона (вследствие ее высокого сопротивления).

Фосфатидилхолин также является существенной составной частью миелина, хотя сфингомиелин содержится в относительно незначительном количестве.

Липидный состав как серого вещества, так и белого вещества мозга отчетливо отличается от такового у миелина. Состав миелина мозга всех изученных видов млекопитающих почти одинаков; имеют место лишь незначительные различия (например, миелин крысы имеет меньше сфингомиелина, чем миелин быка или человека). Существуют некоторые вариации и в зависимости от локализации миелина, например миелин, изолированный из спинного мозга, имеет более высокое значение отношения липида к белку, чем миелин из головного мозга.

В состав миелина входят также полифосфатидилинозиты, из которых трифосфоинозитид составляет от 4 до 6% общего фосфора миелина, а дифосфоинозитид- от 1 до 1,5%. Минорные компоненты миелина включают по крайней мере три эфира цереброзида и два липида на основе глицерина; в составе миелина также присутствуют некоторые длинноцепочечные алканы. Миелин млекопитающих содержит от 0,1 до 0,3% ганглиозидов. В миелине содержится больше моносиалоганглиозида вМ1 по сравнению с тем, что обнаруживается в мембранах мозга. Миелин многих организмов, в том числе и человека, содержит уникальный ганглиозид сиалозилгалактозилцерамид ОМ4.

Липиды миелина ПНС

Липиды миелина периферической и центральной нервной системы качественно подобны, но между ними есть количественные различия. Миелин ПНС содержит меньше цереброзидов и сульфатидов и значительно больше сфингомиелина, чем миелин ЦНС. Интересно отметить наличие ганглиозида ОМр характерного для миелина ПНС некоторых организмов. Различия в составе липидов миелина центральной и периферической нервной системы не столь существенны, как их различия по белковому составу.

Белки миелина ЦНС

Белковый состав миелина ЦНС более прост, чем других мембран мозга, и представлен главным образом протеолипидами и основными белками, которые составляют 60-80% от общего количества. Гликопротеины присутствуют в гораздо меньших количествах. Миелин центральной нервной системы содержит уникальные белки.

Для миелина ЦНС человека характерно количественное превалирование двух белков: положительно заряженного катионного белка миелина (myelin basic protein, МВР) и протеолипида миелина (myelin proteolipid protein, PLP). Эти белки - главные составные части миелина ЦНС всех млекопитающих.

Миелиновый протеолипид PLP (proteolipid protein), также известный как белок Фолча, имеет способность растворяться в органических растворителях. Молекулярная масса PLP составляет приблизительно 30 кДа (Да - дальтон). Его аминокислотная последовательность чрезвычайно консервативна, молекула формирует несколько доменов. Молекула PLP включает три жирные кислоты, как правило, пальмитиновую, олеиновую и стеариновую, соединенные с аминокислотными радикалами эфирной связью.

Миелин ЦНС содержит несколько меньшие количества другого протеолипида - DM-20, названного так по его молекулярной массе (20 кДа). И анализ ДНК, и выяснение первичной структуры показали, что DM-20 образуется в результате отщепления 35 аминокислотных остатков от белка PLP. В процессе развития DM-20 появляется раньше, чем PLP (в некоторых случаях даже до появления миелина); предполагают, что в дополнение к структурной роли в образовании миелина он может участвовать в дифференцировке олигодендроцитов.

Вопреки представлениям о том, что PLP необходим для формирования компактного мультиламеллярного миелина, процесс образования миелина у мышей, «нокаутированных» по PLP/DM-20, происходит лишь с незначительными отклонениями. Однако у таких мышей уменьшена продолжительность жизни и нарушена общая подвижность. Напротив, естественно происходящие мутации в PLP, в том числе его повышенная экспрессия (normal PLP over-expression), имеют серьезные функциональные последствия. Следует отметить, что существенные количества белков PLP и DM-20 представлены в ЦНС, матричная РНК для PLP есть и в ПНС, и небольшое количество белка там синтезируется, но не включается в миелин.

Катионный белок миелина (МВР) привлекает внимание исследователей вследствие его антигенной природы - при введении животным он вызывает аутоиммунную реакцию, так называемый экспериментальный аллергический энцефаломиелит, который представляет собой модель тяжелого нейродегенеративного заболевания - рассеянного склероза.

Аминокислотная последовательность МВР у многих организмов высоко консервативна. МВР расположен на цитоплазматической стороне миелиновых мембран. Он имеет молекулярную массу 18,5 кДа и лишен признаков третичной структуры. Этот основный белок обнаруживает микрогетерогенность при электрофорезе в щелочных условиях. Большинство исследованных млекопитающих содержали различные количества изоформ МБР, имеющих существенную общую часть аминокислотной последовательности. Молекулярная масса МБР мышей и крыс - 14 кДа. МБР с малой молекулярной массой имеет такие же аминокислотные последовательности на N- и С-терминальных частях молекулы, как и остальной МБР, но отличается редукцией около 40 аминокислотных остатков. Соотношение этих основных белков изменяется в процессе развития: зрелые крысы и мыши имеют больше МБР с молекулярной массой 14кДа, чем МБР с молекулярной массой 18 кДа. Две другие изоформы МБР, также обнаруживаемые во многих организмах, имеют молекулярную массу 21,5 и 17 кДа, соответственно. Они образованы присоединением к основной структуре полипептидной последовательности массой около 3 кДа.

При электрофоретическом разделении белков миелина выявляются белки с более высокой молекулярной массой. Их количество зависит от вида организма. Например, мышь и крыса могут содержать таких белков до 30% от общего количества. Содержание этих белков также изменяется в зависимости от возраста животного: чем оно моложе, тем меньше в его мозге миелина, но тем больше в нем белков с более высокой молекулярной массой.

Фермент 2" 3"-циклический нуклеотид З"-фосфодиэстераза (CNP) составляет несколько процентов от общего содержания миелинового белка в клетках ЦНС. Это гораздо больше, чем в других типах клеток. Белок CNP - не главный компонент компактного миелина, он сконцентрирован лишь в определенных участках миелиновой оболочки, связанной с цитоплазмой олигодендроцита. Белок локализован в цитоплазме, но часть его связана с цитоскелетом мембраны - F-актином и тубулином. Биологическая функция CNP может заключаться в регулировании структуры цитоскелета для ускорения процессов роста и дифференциации в олигодендроцитах.

Миелинассоциированный гликопротеин (MAG) - минорный в количественном отношении компонент очищенного миелина, имеет молекулярную массу 100 кДа, содержится в ЦНС в небольшом количестве (менее 1 % от общего белка). MAG имеет единственный трансмембранный домен, который отделяет сильногликозилированную внеклеточную часть молекулы, составленную из пяти подобных иммуноглобулину доменов, от внутриклеточного домена. Его полная структура подобна белку адгезии нейрональной клетки (NCAM).

MAG не присутствует в компактном, мультиламеллярном миелине, но находится в периаксональных мембранах олигодендроцитов, образующих слои миелина. Напомним, что периаксональная мембрана олигодендроцита - наиболее близко расположена к плазматической мембране аксона, но тем не менее эти две мембраны не сливаются, а разделены экстраклеточной щелью. Подобная особенность локализации MAG, а также то, что этот белок относится к иммуноглобулиновому суперсемейству, подтверждает участие его в процессах адгезии и передачи информации (сигналинга) между аксолеммой и миелинобразующими олигодендроцитами в процессе миелинизации. Кроме того, MAG - один из компонентов белого вещества ЦНС, который ингибирует рост нейритов в культуре ткани.

Из других гликопротеинов белого вещества и миелина следует отметить минорный миелинолигодендроцитарный гликопротеин (Myelin-oligodendrocytic glycoprotein, MOG). MOG является трансмембранным белком, содержащим единственный иммуноглобулинподобный домен. В отличие от MAG, который расположен во внутренних слоях миелина, MOG локализован в его поверхностных слоях, в силу чего может участвовать в передаче внеклеточной информации к олигодендроциту.

Малые количества характерных белков мембран могут быть идентифицированы в результате электрофореза на полиакриламидном геле (ПААГ) (например, тубулин). Электрофорез высокого разрешения демонстрирует наличие других незначительных полос белка; они могут быть связаны с присутствием ряда ферментов миелиновой оболочки.

Белки миелина ПНС

Миелин ПНС содержит как некоторые уникальные белки, так и несколько общих с белками миелина ЦНС белков.

Р0 - главный белок миелина ПНС, имеет молекулярную массу 30 кДа, составляет более половины белков миелина ПНС. Интересно отметить, что хотя он отличается от PLP по аминокислотной последовательности, путям посттрансляционной модификации и структуре, тем не менее оба эти белка имеют одинаково важное значение для формирования структуры миелина ЦНС и ПНС.

Содержание МВР в миелине ПНС составляет 5-18% от общего количества белка, в отличие от ЦНС, где его доля достигает трети всего белка. Те же четыре формы белка МВР с молекулярными массами 21, 18,5, 17 и 14кДа, соответственно, обнаруженные в миелине ЦНС, присутствуют и в ПНС. У взрослых грызунов МВР с молекулярной массой 14 кДа (по классификации периферийных миелиновых белков ему присвоено название «Рr») является самым значительным компонентом всех катионных белков. В миелине ПНС присутствует и МВР с молекулярной массой 18 кДа (в этом случае он носит название «белок Р1»). Следует отметить, что важность семейства белков МВР не так велика для миелиновой структуры ПНС, как для ЦНС.

Гликопротеины миелина ПНС

Компактный миелин ПНС содержит гликопротеин с молекулярной массой 22 кДа, названный периферийным миелиновым белком 22 (РМР-22), доля которого составляет менее 5% от общего содержания белков. РМР-22 имеет четыре трансмембранных домена и один гликозилированный домен. Этот белок не играет значительной структурной роли. Однако аномалии гена рmр-22 ответственны за некоторые наследственные невропатологии человека.

Несколько десятилетий назад считалось, что миелин создает инертную оболочку, которая не выполняет никаких биохимических функций. Однако позже в миелине было обнаружено большое количество ферментов, вовлекаемых в синтез и метаболизм компонентов миелина. Ряд ферментов, присутствующих в миелине, включается в метаболизм фосфоинозитидов: фосфатидилинозитолкиназа, дифосфатидилинозитолкиназа, соответствующие фосфатазы и диглицеридкиназы. Эти ферменты представляют интерес вследствие высокой концентрации в миелине полифосфоинозитидов и их быстрого обмена. Есть свидетельства присутствия в миелине мускариновых холинергических рецепторов, G-белков, фосфолипаз С и Э, протеинкиназы С.

В миелине ПНС обнаружена Nа/К-АТФаза, осуществляющая транспорт одновалентных катионов, а также 6"-нуклеотидаза. Наличие этих ферментов позволяет предположить, что миелин может принимать активное участие в аксональном транспорте.

РАМН, 1996. - 470 c.
ISBN 5-900760-02-2
Скачать (прямая ссылка): neyrohimiya1996.djvu Предыдущая 1 .. 36 > .. >> Следующая
89
3.6 БЕЛКИ МИЕЛИНА
Белковый состав миелина своеобразен, но существенно проще, чем в нейронах и глиальных клетках.
В миелине велика доля катионного белка - КБМ (около 30 процентов). Он представляет собой относительно небольшой полипептид с Мг = 16-18 кД. КБМ содержит значительную долю диаминокислот (около 20 процентов) и в то же время около половины составляющих его аминокислот - неполярные. Это обеспечивает, с одной стороны, тесный контакт с гидрофобными компонентами липидов миелина, а с другой стороны, определяет его способность к образованию ионных связей с кислыми группировками липидов. Подробнее функции КБМ будут рассмотрены в главе о липидах в связи с общим анализом структуры миелиновых мембран.
Необычайно высокой гидрофобностью характеризуются так называемые протеолипидные белки Фолча, составляющие большую часть остальных белков миелина. В свою очередь, главный из этих белков - липофилин (Мг = 28 кД), в котором 2/3 составляющих аминокислот - неполярные. Интересна определенная избирательность контактов липофилина с липидами, например, вытеснение холестерина из его окружения. Полагают, что это связано с особенностями вторичной структуры липофилина. Подробнее его роль в формировании миелиновых оболочек рассмотрена опять-таки в главе о липидах.
Довольна велика также доля так называемого белка Вольф-грама (около 15% белков) - кислого протеолипида, довольно богатого остатками дикарбоновых аминокислот, и, в то же время, содержащего около половины остатков неполярных аминокислот.
Наконец, из нескольких десятков других белков миелина отметим миелинассоциированный гликопротеин (МАГ), расположенный на экстрацеллюлярной поверхности мембран; он встречается, кроме того, в олигодендроцитах до миелинизации и в миелине периферической нервной системы. В ЦНС человека он представлен тремя полипептидными цепями с Мг=92, 107, 113 кД, а в периферической нервной системе - одним белком с Мг=107 кД. МАГ относится к гликопротеинам с относительно низким содержанием углеводных остатков - около 30% от массы молекулы, но содержит характерный для гликопротеинов набор углеводов: N-ацетилглюкозамин, N-ацетилнейрами-новая кислота, фукоза, манноза и галактоза. Для белковой части молекулы характерно высокое содержание глутаминовой и
90
аспарагиновой кислот.
Функции белка Вольфграма и МАГ неизвестны, если не считать общих соображений об их участии в организации структуры миелиновых оболочек.
3.7 НЕЙРОСПЕЦИФИЧЕСКИЕ БЕЛКИ ГЛИИ
Подробно описанный в разделе 3.1 белок S-100 содержится и в нейронах, и в глиальных клетках, причем доля его в последних велика - около 85%.
В 1967 г. из а2-глобулинов мозга был выделен нейроспеци-фический а2-гликопротеин с молекулярной массой 45 кД. В мозге человека он появляется на 16-й неделе эмбрионального развития. Углеводные компоненты его включают глюкозамин, ман-нозу, глюкозу, галактозу, галактозамин и N-ацетилнейрамино-вую кислоту. а2-гликопротеин локализован только в асгроци-тах, но отсутствует в нейронах, олигодендроцитах и в клетках эндотелия. Поэтому его можно рассматривать как один из специфических маркеров астроцитов.
Другой белок опять-таки характерен только для клеток глии. Он был выделен из богатых фиброзными астроцитами областей головного мозга человека, а впоследствии - в значительно больших количествах - из мозга больных множественным склерозом (фибральным глиозом). Это вещество было названо глиальным фибриллярным кислым белком (GFA). Он специфичен только для ЦНС, а в ПНС он не обнаружен. Содержание его в белом веществе головного мозга превышает таковое в сером веществе. В онтогенезе мышей максимальное содержание GFA наблюдается между 10-м и 14-м днями постнатального развития, т е. совпадает по времени с периодом миелинизации и пиком диффе-ренцировки астроцитов. Молекулярная масса белка составляет 40-54 кД. Глиальная локализация этого белка также позволяет использовать его как “маркерный” белок для этих клеток.
Функции а2-гликопротеина и белка GFA неизвестны.
Что касается белков микроглии, то следует иметь в виду участие этих клеток в построении миелина. Многие из белков миелина. описанные в предыдущем разделе, выявлены в микроглии.
В глии представлены также многие рецепторные и ферментные белки, участвующие в синтезе вторичных мессенджеров, предшественников нейромедиаторов и других регуляторных соединений, которые могут быть отнесены к нейроспецифиче-ским. Часть из них охарактеризована в следующих главах.
91
3.8 ИНТЕНСИВНОСТЬ МЕТАБОЛИЗМА БЕЛКОВ В РАЗЛИЧНЫХ ОТДЕЛАХ НЕРВНОЙ СИСТЕМЫ
Современное представление о динамическом состоянии белков в нервной ткани было установлено благодаря применению изотопов А.В.Палладиным, Д.Рихтером, А.Лайтой и другими исследователями. Начиная с конца 50-х и в течение 60-х годов при изучении метаболизма белка использовались различные предшественники их биосинтеза (аминокислоты, глюкоза, ацетат и другие), меченые 14С, 3Н, 35S. При этом было показано, что белки и аминокислоты в головном мозге взрослого животного метаболируют, в общем, более интенсивно, чем в других органах и тканях.

Поделиться: