Автоматизация холодильных машин и установок. Принципы автоматизации холодильных установок Основные части и приборы системы автоматизации холодильной установки

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ МАРИЙ ЭЛ

ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

РЕСПУБЛИКИ МАРИЙ ЭЛ

«ТРАНСПОРТНО-ЭНЕРГЕТИЧЕСКИЙ ТЕХНИКУМ».

Курсовая работа на тему

Автоматизация холодильных установок

ПМ 01.02 Cистемы автоматизации сельскохозяйственных организации

Смирнов А.В.

Красный Яр

Введение

1.3 Схема холодильного цикла

2.1 Методика разработки схемы

Заключение

Список литературы

Введение

Автоматизированные системы управления и регулирования являются неотъемлемой частью технологического оснащения современного производства, способствуют повышению и качества продукции и улучшают экономические показатели производства за счет выбора и поддержания оптимальных технологических режимов.

Автоматизация освобождает человека от необходимости непосредственного управления механизмами. В автоматизированном процессе производства роль человека сводится к наладке, регулировке, обслуживании средств автоматизации и наблюдению за их действием. Если автоматизация облегчает физический труд человека, то автоматизация имеет цель облегчить так же и умственный труд. Эксплуатация средств автоматизации требует от обслуживающего персонала высокой техники квалификации.

По уровню автоматизации компрессорные холодильные установки занимает одно из ведущих мест среди других отраслей промышленности. Холодильные установки характеризуются непрерывностью протекающих в них процессов. При этом выработка холода в любой момент времени должна соответствовать потреблению (нагрузке). Почти все операции на холодильных установках механизированы, а переходные процессы в них развиваются сравнительно быстро. Этим объясняется высокое развитие автоматизации в охладительной технике.

Автоматизация параметров дает значительные преимущества:

Обеспечивает уменьшение численности рабочего персонала, т. е. повышение производительности его труда,

Приводит к изменению характера труда обслуживающего персонала,

Увеличивает точность поддержания параметров вырабатываемого холода,

Повышает безопасность труда и надежность работы оборудования,

устройства управления

Цель автоматизации холодильных машин и установок - это повышения экономической эффективности их работы и обеспечение безопасности людей (в первую очередь обслуживающего персонала).

Экономическая эффективность работы холодильной машины обеспечивается уменьшением эксплуатационных расходов и сокращением затрат на ремонт оборудования.

Оборудование с ручным управлением и частично автоматизированные машины работают с постоянным присутствием обслуживающего персонала.

Полностью автоматизированное оборудование не требует постоянного присутствия обслуживающего персонала, но не исключает необходимости периодических контрольных осмотров и проверок по установленному регламенту.

Автоматизированная холодильная установка должна содержать одну или несколько систем автоматизации, каждая из которых выполняет определенные функции. Кроме того, существуют устройства объединяющие (синхронизирующие) работу этих систем.

Система автоматизации - это совокупность объекта автоматизации и автоматических устройств, позволяющих управлять работой автоматизации без участия обслуживающего персонала.

Объектом курсового проекта является холодильная установка в комплексе, отдельные ее элементы.

Целью данного курсового проекта является описание технологического процесса холодильного оборудования, разработка функциональной схемы данной установки и выбор технических средств автоматизации.

1. Описание технологического процесса

1.1 Автоматизация холодильных компрессорных станций

Искусственный холод находит широкое применение в пищевой промышленности, в частности при консервировании скоропортящихся продуктов. При охлаждении обеспечивается высокое качество хранимых и выпускаемых продуктов.

Искусственное охлаждение может осуществляться периодически и непрерывно. Периодическое охлаждение происходит при плавлении льда либо при сублимации твердого диоксида углерода (сухого льда). Этот способ охлаждения обладает большим недостатком, так как в процессе плавления и сублимации хладагент теряет свои охлаждающие свойства; при длительном хранении продуктов трудно обеспечить определенную температуру и влажность воздуха в холодильной камере.

В пищевой промышленности широко распространено непрерывное охлаждение с применением холодильных установок, где хладагент -- сжиженный газ (аммиак, фреон и др.) -- совершает круговой процесс, при котором он после осуществления холодильного эффекта восстанавливает свое первоначальное состояние.

Применяемые хладагенты кипят при определенном давлении, зависящем от температуры. Следовательно, изменяя давление в сосуде, можно изменять температуру хладагента, а следовательно, и температуру в холодильной камере. Компрессор всасывает фреон из испарителя II, сжимает их и через маслоотделитель III нагнетает в конденсатор IV. В конденсаторе фреон конденсируются за счет охлаждающей воды, и жидкий фреон из конденсатора, охлажденный в линейном ресивере V, через регулирующий вентиль VI поступает в испаритель II, где, испаряясь, охлаждает промежуточный хладоноситель (рассол, ледяную воду), нагнетаемый к потребителям холода насосом VII.

Регулирующий вентиль VI служит для дросселирования жидкого фреона, температура которого при этом снижается. Система автоматизации предусматривает автоматическое управление работой компрессора и противоаварийные защиты. Командой на автоматический пуск компрессора служит повышение температуры рассола (ледяной воды) на выходе из испарителя. Для управления температурой используется регулятор температуры типа, датчик которого устанавливается на трубопроводе выхода рассола (ледяной воды)из испарителя.

При работе компрессора в автоматическом режиме функционируют следующие противоаварийные защиты: от понижения разности давлений масла в системе смазки и картере - применяется датчик-реле разности давлений; от понижения давления всасывания и повышения давления нагнетания - применяется датчик-реле давления; от повышения температуры нагнетания - применяется датчик-реле температуры; от отсутствия протока воды через охлаждающие рубашки - применяется реле протока; от аварийного повышения уровня жидкого фреон в испарителе -- применяется полупроводниковое реле уровня.

При пуске компрессора в автоматическом режиме открывается вентиль с электромагнитным приводом на подаче воды в охлаждающие рубашки и закрывается вентиль на байпасе.

Контроль давления рассола в нагнетательном трубопроводе осуществляется датчиком-реле давления.

Дистанционный контроль температуры воздуха, рассола, воды в контрольных точках холодильной установки осуществляется термопреобразователями.

Аппаратура контроля, управления и сигнализации остального технологического оборудования размещена в панелях щита управления.

1.2 Анализ возмущающих воздействий объекта автоматизации

В данной схеме предусмотрены контроль, регулирование, управления и сигнализация параметров технологического процесса.

Контроль верхнего и нижнего уровней жидкого фреона в линейном ресивере, в котором контролируется уровень от которого зависит наполнение ресивера.

Также контролю подлежит температура воздуха в холодильной установке от которой зависит охлаждение и количество вырабатываемого холода. холодильный автоматизация воздухоохладитель компрессорный

Контроль давления холодного рассола в нагнетательном трубопроводе, который зависит от нагнетания насосом, насос воздействуя на холодный рассол изменяет его подачу.

Также контролируется температура холодной воды поступающей из бассейна в конденсатор которая необходима для конденсирования (охлаждения) паров фреона.

На выходе из конденсатора контролируется температура жидкого фреона, который поступает в линейный ресивер.

Регулирующий вентиль VI установленный на трубопроводе служит для дросселирования жидкого фреона, за счет чего температура при этом снижается.

Повышение температура рассола (ледяной воды) на выходе из испарителя управляет работой компрессора и служит командой на автоматический пуск компрессора.

На трубопроводе от ресивера установлен вентиль с электромагнитным приводом, воздействуя на который регулируется подача жидкого фреона в испаритель.

При отсутствии протока воды через охлаждающие рубашки или давления воды ниже установленного предела, отключается компрессор.

На подаче воды в охлаждающие рубашки, на трубопроводе установлен вентиль с электромагнитным приводом, воздействуя на который при пуске компрессора в автоматическом режиме изменяет его положение в открытое состояние, а при этом закрывается вентиль.

От аварийного повышения уровня жидкого аммиака в испарителе установлены датчики температуры, следящие за верхним уровнем. Через вентиль установленный па трубопроводе от ресивера регулируется уровень жидкого фреона в испарителе.

1.3 Схема холодильного цикла

Холодильный цикл в основном идентичен с другими нормальными технологиями. Наиболее важное отличие - добавочное трубное подсоединение от жидкостной линии к импульсному клапану впрыска на компрессоре. Чтобы обеспечить доступ кипящей свободной жидкости, трубопроводы следует устанавливать на горизонтальной секции жидкостной линии и прежде всего направлять вниз. Фильтр должен быть установлен для защиты импульсного клапана впрыска и компрессора; смотровое стекло дает возможность визуальной проверки жидкостного снабжения. Размеры жидкостной линии к импульсному клапану впрыска: 10 мм (3/8”). Конструкция и управление цикла имеет важное влияние от цикла впрыска и поэтому от полной производительности изделия. Перегрев всасываемого газа и разницу между давлением конденсации и всасывания следует сохранять как можно меньше (необходимо устанавливать минимальный перегрев).

Хорошая изоляция линии всасывания/ короткие прогоны труб;

Отказ от теплообменников (когда возможно);

Низкое давление падения в трубах и составляющих;

Малая температурная разница испарителя и конденсатора;

Контроль давления конденсации.

2. Разработка функциональной схемы холодильной установки

2.1 Методика разработки схемы

Схемы автоматизации являются основным техническим документом, определяющим функционально-блочную структуру отдельных узлов автоматического контроля, управления и регулирования технологического процесса и оснащение объекта управления приборами и средствами автоматизации (в том числе средствами телемеханики и вычислительной техники).

Объектом управления в системах автоматизации технологических процессов является совокупность основного и вспомогательного оборудования вместе с встроенными в пего запорными и регулирующими органами, а также энергии, сырья и других материалов, определяемых особенностями используемой технологии.

Задачи автоматизации решаются наиболее эффективно тогда, когда они прорабатываются в процессе разработки технологического процесса.

В этот период нередко выявляется необходимость изменения технологических схем с целью приспособления их к требованиям автоматизации, установленным па основании технико-экономического анализа.

Создание эффективных систем автоматизации предопределяет необходимость глубокого изучения технологического процесса не только проектировщиками, но и специалистами монтажных, наладочных и эксплуатационных организаций. При разработке схем автоматизации технологических процессов необходимо решить следующее:

Получение первичной информации о состоянии технологического процесса оборудования;

Непосредственное воздействие на технологический процесс для управления;

Стабилизация технологических параметров процесса;

Контроль и регистрация технологических параметров процессов и состояния

технологического оборудования;

Указанные задачи решаются на основании анализа условий работы технологического оборудования, выявленных законов и критериев управления объектом, а также требований, предъявляемых к точности стабилизации, контроля и регистрации технологических параметров, к качеству регулирования и надежности.

Задачи автоматизации, как правило, реализуются с помощью технических средств, включающих в себя: отборные устройства, средства получения первичной информации, средства преобразования и переработки информации, средства представления и выдачи информации обслуживающему персоналу, комбинированные, комплектные и вспомогательные устройства. Результатом составления схем автоматизации являются:

1 Выбор методов измерения технологических параметров;

2 Выбор основных технических средств автоматизации, наиболее полно отвечающих предъявляемым требованиям и условиям работы автоматизируемого объекта;

3 Определение приводов исполнительных механизмов регулирующих и запорных органов технологического оборудования, управляемою автоматически или дистанционно;

4 Размещение средств автоматизации на щитах, пультах, технологическом оборудовании и трубопроводах и т. п. и определение способов представления информации о состоянии технологического процесса и оборудования.

Современное развитие всех отраслей промышленности характеризуется большим разнообразием используемых в них технологических процессов.

Технологическое оборудование и коммуникации при разработке схем автоматизации должны изображаться, как правило, упрощенно, без указания отдельных технологических аппаратов и трубопроводов вспомогательного назначения. Однако изображенная таким образом технологическая схема должна давать ясное представление о принципе ее работы и взаимодействии со средствами автоматизации.

Всем приборам и средствам автоматизации, изображенным на схемах автоматизации, присваиваются позиционные обозначения (позиции), сохраняющиеся во всех материалах проекта.

Обозначения на схемах автоматизации электроаппаратуры на стадии рабочей документации или при одностадийном проектировании должны соответствовать обозначениям, принятым в принципиальных электрических схемах.

При определении границ каждой функциональной группы следует учитывать следующее обстоятельство: если какой-либо прибор или регулятор связан с несколькими датчиками или получает дополнительные воздействия под другим параметром (например, корректирующий сигнал), то все элементы схемы, осуществляющие дополнительные функции, относятся к той функциональной группе, на которую они оказывают воздействие.

Регулятор соотношения, в частности, входит в состав той функциональной группы, на которую оказывается ведущее воздействие по независимому параметру.

Схема автоматизации выполняется в виде чертежа, на котором схематически условными изображениями показывают: технологическое оборудование, коммуникации, органы управления и средства автоматизации с указанием связей между технологическим оборудованием и средствами автоматизации, а также связей между отдельными функциональными блоками и элементами автоматики.

Схемы автоматизации могут разрабатываться с большей или меньшей степенью детализации. Однако объем информации, представленный на схеме, должен обеспечить полное представление о принятых основных решениях по автоматизации данного технологического процесса и возможность составления на стадии проекта заявочных ведомостей приборов и средств автоматизации, трубопроводной арматуры, щитов и пультов, основных монтажных материалов и изделий, а на стадии рабочего проекта -- всего комплекса проектных материалов, предусмотренных в составе проекта.

Схему автоматизации выполняют, как правило, на одном листе, на котором изображают средства автоматизации и аппаратуру всех систем контроля, регулирования, управления и сигнализации, относящуюся к данной технологической установке. Вспомогательные устройства, такие как редукторы и фильтры для воздуха, источники питания, реле, автоматы, выключатели и предохранители в цепях питания, соединительные коробки и другие устройства и монтажные элементы, на схемах автоматизации не показывают.

Схемы автоматизации могут быть выполнены двумя способами: с условным изображением щитов и пультов управления в виде прямоугольников (как правило, в нижней части чертежа), в которых показываются устанавливаемые на них средства автоматизации; с изображением средств автоматизации на технологических схемах вблизи отборных и приемных устройств, без построения прямоугольников, условно изображающих щиты, пульты, пункты контроля и управления.

При выполнении схем по первому способу на них показываются все приборы и средства автоматизации, входящие в состав функционального блока или группы, и место их установки. Преимуществом этого способа является большая наглядность, в значительной степени облегчающая чтение схемы и работу с проектными материалами.

При построении схем по второму способу, хотя он и дает только общее представление о принятых решениях по автоматизации объекта, достигается сокращение объема документации. Чтение схем автоматизации, выполненных таким образом, затруднено, не отображают организацию пунктов контроля и управления объектом.

При развернутом изображении на схемах показывают: отборные устройства, датчики, преобразователи, вторичные приборы, исполнительные механизмы, регулирующие и запорные органы, аппаратуру управления и сигнализации, комплектные устройства (машины централизованного контроля, телемеханические устройства) и т. д.

При упрошенном изображении на схемах показывают: отборные устройства, измерительные и регулирующие приборы, исполнительные механизмы и регулирующие органы. Для изображения промежуточных устройств (вторичных приборов, преобразователей, аппаратуры управления и сигнализации и т. п.) используются общие обозначения в соответствии с действующими стандартами на условные обозначения в схемах автоматизации.

Комбинированное изображение предполагает показ средств автоматизации в основном развернуто, однако некоторые узлы изображают упрощенно.

Приборы и средства автоматизации, встраиваемые в технологическое оборудование и коммуникации или механически связанные с ними, изображают на чертеже в непосредственной близости от них. К таким средствам автоматизации относятся: отборные устройства давления, уровня, состава вещества, датчики, воспринимающие воздействие измеряемых и регулирующих величин (измерительные сужающие устройства, ротаметры, счетчики, термометры расширения и т. п.), исполнительные механизмы, регулирующие и запорные органы.

2.2 Функциональная схема автоматизации холодильного модуля

Холодильная автоматизированная установка состоит из двух компрессоров (КМ), оснащенных устройствами автоматической защиты, двух маслоотделителей (МО), сборника масла (МС), форконденсатора(ФКД), конденсатора(КД) c вентиляторами, линейного ресивера (РЛ) с двумя датчиками уровня, двух воздухоохладителей (ВО), установленных в камере и оснащенных вентиляторами, регуляторами заполнения и соленоидными вентилями (СВ), отделитель жидкости (ОЖ) с двумя датчиками уровня, дренажного ресивера (РД) с датчиком нижнего уровня и СВ, двух водяных насосов.

2.3 Работа узлов функциональной схемы автоматизации холодильного модуля

Основной регулируемой величиной в данной схеме есть температура воздуха в холодильной камере Ее регулируют включением и выключением КМ а зимой возможно ее поддержание включением и выключением электронагревателей ВО №1 и ВО №2

Для управления каждым КМ спроектирован малогабаритный пульт автоматического управления типа ПАК. КМ оснащены стандартными приборами автоматической защиты от аварийных режимов работы

Заполнение ВО регулируется автоматически по перегреву пара Оттаивание ВО проводится горячим паром аммиака по времени

Предусмотрено следующее блокирование: Включение КМ возможно только после включения водяного насоса и вентилятора КД; После выключения КМ №1 (№2) СВ на линии подачи жидкости в ВО №1 (№2) должен быть закрыт

По уровню жидкого фреона в ОЖ проводится аварийное выключение КМ В РД контролируют и сигнализируют нижний уровень жидкости а в РЛ нижний и верхний уровни

2.3.1 Узел автоматической защиты компрессоров

Как уже отмечалось, для каждого КМ спроектирован стандартный пульт управления типа ПАК. Этот пульт обеспечивает автоматическое управление и защиту КМ от аварийных режимов работы. На фасаде пульта расположены ключ выбора режима КМ, кнопки, лампа (многоцифровая) сигнализации. К пульту управления присоединяются контакты камерного термореле, а также контакты приборов защиты: реле контроля системы смазки (РКСС) 4а (13а); двухблочное реле давления(ДРД) 5а (14а); реле контроля температуры нагнетания (РТ) 3а (12а) - планируется использовать разработанное в институте «Агрохолод» ЭРТ; реле протока воды (РП) 6а (15а); реле уровня (РУ) 25б, 26б у ОЖ - разработка «Агрохолод».

Срабатывание какого-либо из перечисленных приборов автоматической защиты отключает КМ и при этом включается сигнальная лампа, в которой высвечивается соответствующая цифра, которая показывает по какой причине выключается КМ. Так как ХМ работает в автоматическом режиме, то при аварийной остановке КМ на щитке вахтера включается сигнальная лампа. По этому сигналу вахтер вызывает машиниста, который устраняет причину аварии и включает КМ.

Приборы автоматической защиты работают таким образом. РКСС срабатывает в случае уменьшения перепада давления масла на линии нагнетания масленого насоса и в картере КМ ниже заданного значения.

При уменьшении расхода воды через рубашку КМ, или при полном ее исчезновении срабатывает реле протока воды.

Если температура нагнетания превосходит заданную, то срабатывает РТ нагнетания.

ДРД контролирует давления всасывания агента и давление нагнетания. Это реле имеет два измерительных блока (два сильфона), которые через рычажную систему влияют на одну и ту же пару контактов. Если давление всасывания становится ниже допустимого, из-за чего может произойти всасывание воздуха в систему, что приведет к вспениванию масла, или давление нагнетания становится выше допустимого (это может произвести к разрушению КМ), то это реле отключает электродвигатель КМ.

В ОЖ контролируются верхний и нижний аварийные уровни аммиака. Контакты обоих датчиков присоединены к обоим пультам ПАК потому, что ОЖ это общий сосуд для обеих КМ. Дублирование контроля уровня в ОЖ необходимо для того, чтобы избежать гидравлического удара и тем самым не допустить выхода из строя КМ. Если в процессе работы уровень в ОЖ достигнет верхнего значения, то сработает датчик 25б и выключит КМ. Заметим, что подключение РД к ОЖ значительно снижает возможность повышения уровня в ОЖ до верхнего значения.

2.3.2 Узел автоматического включения резервного водяного насоса

В технологической схеме предусмотрено два насоса (один рабочий, другой резервный). Схема автоматизации обеспечивает автоматическое включение резервного водяного насоса таким образом. На общей линии нагнетания водяных насосов установлен электроконтактный манометр 29 а. Если в этой точке давление нагнетания води воды падает ниже допустимого при работающем основном насосе, то электроконтактный манометр реагирует на это и дает команду на автоматическое включение резервного водяного насоса.

2.3.3 Узел оттаивания воздухоохладителей

Оттаивание ВО проводится по времени. Для этого в схеме автоматизации спроектированы два моторных реле времени МКП с максимальной выдержкой - 24 часа.

Оттаивание ВО проводится по очереди с частотой один раз в сутки. Оттаивание продолжается от 20 до 30 минут.

В пусковой период оттаивание ВО проводят вручную, а в режиме хранения - автоматически. Оттаивание проводят горячим паром аммиака, который подается в ВО с линии нагнетания КМ.

В процессе оттаивания ВО №1 работает КМ №2, а при оттаивании ВО №2 работает КМ №1. При этом с помощью 13 - ти СВ составляют соответствующие пути движения агента. Соответствующие положения СВ в процессе ручного и автоматического оттаивания ВО одинаковы. Рассмотри м оттаивание ВО №1 и №2 вручную в пусковом режиме. Например, оттаивание ВО №1 осуществляют таким образом. Выключают КМ 31 и вентилятор №1. КМ №2, вентилятор №2 работают в пусковом режиме, также работают водяной насос и вентилятор №3 КД. С помощью универсального переключателя, который относится к ВО №1, закрывают СВ А3 (на жидкостной линии) и А2 (на паровой линии), А9… А12, а открывают А1 и А4.СВ ВО №2 А7 и А6 - открыты, а А5 и а8 - закрыты. Открытый СВ А13.

Автоматическое оттаивание ВО №1 и №2 проводят по времени. Особенность оттаивания в автоматическом режиме заключается в том, что после оттаивания (длится 20 - 30 минут), например, ВО №1 этот ВО на протяжении суток в работу не включают, а работает ВО №2. Через сутки проводят оттаивание ВО №2, который потом сутки не работает. На протяжении этих суток работает ВО №1 и т.д. Итак, в режиме хранения в работе всегда находится только один ВО и один КМ.

3. Выбор технических средств холодильной установки

3.1 Выбор и обоснование выбора приборов и средств автоматизации

На компрессоре установлен датчик-реле разности давлений типа РКС-ОМ5 (1) предназначен для контроля сигнализации и двухпозиционного регулирования разности давлений в системах смазки холодильных агрегатов в подвижных и стационарных установках и автоматизации технологических процессов. Контролируемые среды: хладоны, воздух, вода, масло; аммиак для датчика РКС-ОМ5А. Приборы выпускаются с зоной нечувствительности направленной в сторону повышения разности давлений относительно уставки. Установка предела срабатывания производится по шкале с помощью винта настройки. Выходное устройство имеет один переключающий контакт. Разрывная мощность контактов при напряжении 220 В не более 300 В -А для переменного тока и 60 Вт для постоянного.

Приборы указанного типа рассчитаны на работу при температуре окружающего воздуха от --50 до +65 °С а датчик РКС-ОМ5А при температуре от --30 до +65 °С и относительной влажности до 98 %.

Габаритные размеры 66x104x268 мм. масса не более 1,6 кг.

Исполнение обыкновенное, экспортное тропическое.

Контроль давления рассола в нагнетательном трубопроводе осуществляется датчиком-реле давления Д220А (11), от понижения давления всасывания и повышения давления нагнетания -- применяется датчик-реле давления Д220А (2)

Датчики-реле давления сдвоенные типа Д220 (2, 11) имеют датчик низкого давления (ДНД) и датчик высокого давления (ДВД), действующие с помощью системы рычагов на одно общее коммутационное контактное устройство. Технические характеристики боров приведены ДНД обеспечивает переключение контактов при понижении контролируемого давления до установленного значения и возврат в исходное положение при повышении контролируемого давления (с учетом зоны нечувстви-ности). ДВД производит переключение контактов при повышении контролируемого давления до установленного значения и возврат в исходное положение при понижении контролируемого давления (с учетом зоны нечувствительности). Конструктивно каждый датчик включает в себя чувствительный элемент -- сильфон и узел настройки уставок. В ДНД предусмотрен также узел настройки зоны нечувствительности. Разброс срабатываний не превышает 0,01 МПа для ДНД и 0,02 МПа для ДВД. Д220А-12 Максимально допустимое давление среды, 2,2 МПа. Пределы уставки срабатывания, (-- 0,09)--(+0,15) МПа. Основная погрешность срабатывания, 0,02 МПа. Зона нечувствительности, 0,03--0,1 МПа. Контролируемая среда аммиак в холодильных установках па стационарных (модификация А) и нестационарных (модификация АР) объектах). Габаритные размеры, 200Х155Х85мм.

Сигнал от датчика температуры поступает на датчик-реле температуры типа ТР-ОМ5 (3) предназначен для использования в системах контроля и двухпозиционного регулирования температуры жидких и газообразных сред в холодильных и других установках. Датчики ТР-ОМ5-00--ТР-ОМ5-04 выпускаются с зоной нечувствительности, направленной в сторону повышения температуры контролируемой среды относительно уставки срабатывания, а остальные приборы -- в сторону понижения температуры. Контактное устройство имеет один переключающий контакт. Коммутируемая мощность контактов не более 300 В -А при напряжении 220 В переменного тока и 60 Вт при напряжении 220 В постоянного тока. Датчики рассчитаны на работу при температуре окружающего воздуха от --40 до +50 °С и относительной влажности до 98 %. Пределы уставки срабатывания (- 60) - (- 30) °С. Основная погрешность ±1,0 °С. Зона нечувствительности регулируемая 4 - 6 °С. Длина капилляра 1,5; 2,5; 4,0; 10.

Габаритные размеры 160x104x68 мм, масса не более 2,2 кг. Исполнение обыкновенное, экспортное, тропическое.

Реле протока сильфонное типа РПС (4) предназначено для контроля наличия потока воды температурой до 70 °С в системах автоматизации различных технологических процессов. Реле должно устанавливаться на горизонтальном участке. Регулировка предела срабатывания осуществляется с помощью специального винта по шкале. Перед установкой реле во втулке, расположенной между двумя сильфонами, просверливается отверстие, диаметр которого определяется по графику зависимости расхода от давления на входе в реле. График приводится в инструкции по эксплуатации. Выходное устройство имеет один замыкающий контакт. Погрешность срабатывания не превышает 10 % от номинального значения расхода.

Реле рассчитано на работу при температуре окружающего воздуха от 5 до 50 °С и относительной влажности до 95 %. Диаметр условного прохода, 20 мм. Максимально допустимое давление среды, 0,1 МП а. Пределы уставки срабатывания, 0--100 л/мин. Допустимый ток контактного устройства 2 А при напряжении 220 В переменного тока. Габаритные размеры 135x115x18 мм, масса не более 2,5 кг. Исполнение обыкновенное, экспортное, тропическое.

Реле уровня полупроводниковые типов ПРУ-5М и ПРУ-5МИ (7б,8б,9б,12б,13б) предназначены для контроля уровня аммиака, хладона, воды, дизельного топлива, масла и других жидкостей плотностью не менее 0,52 г/см3 в стационарных и судовых установках. Приборы состоят из первичного (ПП) и передающего (ПРП) преобразователей. В первичном преобразователе перемещение поплавка преобразуется в сигнал переменного тока с помощью катушек, включенных в мостовую схему. Изменение напряжения на катушках происходит в результате изменения их индуктивности за счет перемещения поплавка из магнитного материала. Сигнал с ПП поступает на дифференциальный усилитель ПРП с выходным электромагнитным реле. В зависимости от положения уровня контролируемой жидкости происходит срабатывание выходного реле, контакты которого могут использоваться во внешних цепях контроля и управления исполнительными механизмами.

Первичный преобразователь реле ПРУ-5МИ предназначен для работы во взрывоопасных зонах помещений и наружных установок, передающий преобразователь используется вне взрывоопасных зон.

Материал деталей ПП, соприкасающихся с контролируемой средой, -- сталь 12Х18Н10Т и сталь 08 КП; поплавок в зависимости от агрессивности контролируемой среды имеет соответствующее ей защитное покрытие.

Питание реле переменным током напряжением 220 или 380 В частотой 50 или 60 Гц. Потребляемая мощность не более 10 В-А. Габаритные размеры: ПП 90x135x180 мм; ПРП 152х90х Х295 мм; масса: ПП не более 2,5 кг; ПРП не более 2,7кг. Исполнение обыкновенное, тропическое.

Вентили мембранные бессальниковые с разгрузочным золотником 15кч888р СВМ (5,6, 9в) управляются электромагнитным приводом в водозащищенном исполнении. Герметичность запорного органа обеспечивается при перепаде давления на золотнике не менее 0,1 МПа. Температура окружающей среды для воды и воздуха до 50 °С, для рассола и фроена от --50 до +50 °С. Диаметр условного прохода 25, 40, 50, 65. Строительная длина 160, 170, 230, 290. Рабочая среда рассол (-40) - (+45), с маслом (-30) - (+45). Условное давление 1,6 МПа. Род тока и напряжения переменный 127, 220, 380; постоянный 110, 220. Масса 6,2; 7,8. Изготовитель или поставщик «Семеновский арматурный завод».

Чувствительный элемент ТСМ (14-18, 19а) представляет собой бескаркасную обмотку из медной проволоки, покрытую фторопластовой пленкой и помещенную в тонкостенную металлическую гильзу с керамическим порошком. Чувствительный элемент - медные типа ЭЧМ - 070 - диаметр 5 мм и длину 20, 50 или 80 мм. Пределы измерения медных чувствительных элементов от - 50 до + 200 °С, инерционность 15 и 25 с для номинальных статических характеристик 50М и 100М соответственно.

Сигнал от ТСМ поступает на восьмиканальный прибор УКТ38-В.УКТ38-В (19б) Устройство контроля температуры восьмиканальное со встроенным барьером искрозащиты

УКТ38-В предназначен для контроля температуры в нескольких зонах одновременно (до 8-ми) и аварийной сигнализации о выходе любого из контролируемых параметров за заданные пределы, а также для их регистрации на ЭВМ.

Применяется для подключения датчиков, находящихся во взрывоопасных зонах в технологическом оборудовании в пищевой, медицинской и нефтеперерабатывающей промышленности. Прибор имеет искробезопасную электрическую цепь уровня, что обеспечивает его взрывозащищенность.

УКТ38-В представляет собой восьмиканальное устройство сравнения, имеющее восемь входов для подключения датчиков, блок искрозащиты, микропроцессорный блок обработки данных, формирующий сигнал «Авария», и одно выходное реле. Регистрация контролируемых параметров на ЭВМ осуществляется через адаптер сети ОВЕН АС2 по интерфейсу RS-232.

Входы прибора

УКТ38-В имеет 8 входов для подключения измерительных датчиков.

Входы УКТ38-В могут быть только однотипными и выполняются в одной из следующих модификаций:

01 для подключения термопреобразователей сопротивления типа ТСМ 50М или ТСП 50П;

03 для подключения термопреобразователей сопротивления типа ТСМ 100М или ТСП 100П;

04 для подключения термопар типа ТХК(L) или ТХА(K);

Блок обработки данных предназначен для обработки входных сигналов, индикации контролируемых значений и формирования аварийного сигнала.

Блок обработки данных УКТ38-В включает в себя 8 устройств сравнения.

Выходные устройства

УКТ38-В имеет одно выходное реле «Авария» для включения аварийной сигнализации или аварийного отключения установки.

Для управления температурой используется регулятор температуры типа РТ-2 (106), датчик которого 10а устанавливается на трубопроводе выхода рассола (ледяной воды) из испарителя.

Регуляторы температуры типа РТ-2 (10б) предназначены для двух-позиционного РТ2 трехпозиционного РТЗ и пропорционального РТ-П регулирования температуры в системах автоматизации уста¬новок вентиляции, кондиционирования и в системах автоматиза¬ции других технологических процессов. Регуляторы работают в комплекте с термопреобразователями сопротивления ТСМ и ТСП с номинальными статическими характеристика1\ш Гр. 23 и 100П соответственно.

Двух позиционные регуляторы имеют регулируемую зону воз¬врата 0,5--10 °С; трехпозиционные регуляторы -- регулируемую зону нечувствительности 0,5--10 °С. Пропорциональные регуля¬торы работают в комплекте с исполнительным механизмом, имею¬щим реостат обратной связи сопротивлением 120 или 185 Ом. Минимальное значение зоны пропорциональности не более 1°С, максимальное -- не менее 5 °С, чувствительность составляет не более 10 % от зоны пропорциональности. Основная допустимая погрешность не более 1 °С при шкале до 40 °С и не более 2 °С при шкале свыше 40 °С.

Выходные контакты коммутируют цепи переменного тока до 2,5 А и постоянного тока до 0,2 А при напряжении до 220 В.

Питание регуляторов переменным током напряжением 220 В частотой 50 или 60 Гц. Потребляемая мощность до 8 В-А.

Регуляторы рассчитаны на работу при температуре окружающего воздуха от 5 до 50 °С и относительной влажности до 80 %.

Габаритные размеры 90x150x215 мм, масса не более 2,5 кг.

Исполнение обыкновенное, экспортное, тропическое.

Заключение

Сегодня технологии изготовления холодильных установок находятся на очень высоком уровне. Разработка новых моделей холодильных агрегатов сегодня затронула даже сферу микроэлектроники. Так же не обошли стороной и технологии производства холодильных машин и цифровые компьютерные технологии.

Применение холодильных установок с компьютерным управлением в быту значительно добавляет удобства в их эксплуатацию, создаёт экономию времени, а компьютерный контроль за состоянием узлов агрегата поддерживает его более надёжную и безопасную работу в течение долгих лет.

Применение же холодильных установок с компьютерным управлением на производстве - повышает эффективность производства, обеспечивает надёжный контроль температуры, тем самым надёжно сохраняя сырьё, и обеспечивает минимальные его потери.

Пожалуй, основным недостатком таких установок является сложность и высокая стоимость ремонта электронных частей компьютерного управления. Ко всему прочему электронные компоненты требуют особых условий эксплуатации. Ещё одним недостатком является то, что холодильники с компьютерным управлением стоят достаточно дорого, но зато экономия на минимальных потерях сырья при хранении в производстве полностью оправдывает стоимость агрегатов.

Ещё одной не маловажной проблемой - является нехватка специалистов по обслуживанию такой техники. Но большинство предприятий приглашают специалистов из - за рубежа для обслуживания импортных холодильных установок т.к большая часть холодильников с цифровым управлением поставляется из-за границы.

Список литературы

1. Крылов Н.В. , Гришин Л. М. Экономика холодильной промышленности. М., Агропромиздат, 1987, 272 с.;

2. Холодильная техника. 1986 , № 11 , с. 2 -4 ;

3. Оценка и совершентствование условий холодильного хранения овощей. Янковский и др. , Сборник трудов ЛТИХП. Холодильная обработка и хранение Пищевых продуктов. Л., 1974 , вып. 2 , с. 125-132;

4. Ужанский В. С. Автоматизация холодильных машин и установок. М., Пищевая промышленность, 1973 , 296 с.

5. Проектирование систем автоматизации технологических процессов. Справочное пособие под ред. А.С. Клюева 2-е издание, переработанное и дополненное Москва Энергоатомиздат 1990г.

6. Технологические измерения и КИП в пищевой промышленности Москва ВО " Агропромиздат" 1990г.

7. Колесов Л.В. Основы автоматики - М.: Колос, 1984г

8. Кирсанов В.В. Механизация и автоматизация животноводства.- М.: Изд.центр «Академия»;2004г.

9. Шишмарёв В.Ю. Автоматизация технологических процессов.- М.: Изд.центр «Академия»;2007г.

10. Шеповалов В.Д. Средства автоматизации промышленного животноводства.- М.: Колос, 1981г.

11. Герасимович Л.С., Калинин Л.А. Электрооборудование и автоматизация сельскохозяйственных агрегатов и установок.- М.: Колос, 1981г.

12. Кудрявцев И.Ф., Калинин Л.А. Электрооборудование и автоматизация сельскохозяйственных агрегатов и установок.- М.: Агропромиздат, 1988г.

13. Дайнеко В.А. Электрооборудование сельскохозяйственных предприятий.-М.:Минса: Новое издание, 2008г.

14. Каганов И.Л. Курсовое и дипломное проектирование.- М.: Агропромиздат, 1990г.

15. Акимцев Ю.И., Веялис Б.С. Электроснабжение сельского хозяйства.-М.: Колос, 1994г.

16. Сибикин Ю.Д. Электроснабжение промышленных и гражданских зданий. - М.: Академия,2006г.

17. Соколова Е.М. Электрическое и электромеханическое оборудование. Общепромышленные механизмы и бытовая техника.- М.: Мастерство, 2001г.

Размещено на Allbest.ru

Подобные документы

    Задачи и пути совершенствования холодильных установок на современном этапе. Разработка функциональной схемы автоматизации холодильного модуля. Экономическое обоснование данного проекта. Устройство и принцип работы пульта автоматизации компрессора ПАК 11.

    курсовая работа , добавлен 19.09.2010

    Монтаж холодильных установок: оборудования со встроенными герметическими машинами, малых установок с вынесенными агрегатами, установок средней и большой производительности. Техника безопасной работы при обслуживании и эксплуатации холодильных установок.

    курсовая работа , добавлен 05.11.2009

    Проектирование систем и изображение средств автоматизации энергетической установки на функциональных схемах. Параметры, регулируемые в холодильных установках. Построение схем автоматизации и регулирования. Предельные рабочие значения регулируемых величин.

    реферат , добавлен 21.02.2010

    Область применения холодильных установок. Обслуживание оборудования, холодильно-компрессорных машин и установок в соответствии с техническими чертежами и документацией. Требования к индивидуальным особенностям специалиста и профессиональной подготовке.

    презентация , добавлен 10.01.2012

    История развития и достижения современной холодильной техники. Определение температуры конденсации хладагента. Расчет и подбор холодильного оборудования (компрессоров, конденсатора, ресиверов). Автоматизация холодильных установок химического комбината.

    курсовая работа , добавлен 04.04.2016

    Автоматизация процесса сварки. Анализ условий автоматизаций и возмущающих воздействий при сварке. Характеристики объектов регулирования при разных способах сварки. Системы ориентации электрода по стыку при аргонодуговой сварке криволинейных поверхностей.

    курсовая работа , добавлен 28.04.2015

    Механизация и автоматизация в химической промышленности. Автоматизация процесса абсорбции циклогексана и циклогексанона. Производство работ и монтаж объекта автоматизации. Монтаж элементов объекта, диагностика систем, эксплуатация, метрологический надзор.

    курсовая работа , добавлен 10.04.2011

    Расчет, подбор и техническая характеристика воздухоохладителей. Подбор скороморозильного аппарата. Описание работы холодильной установки. Автоматизация компрессорного агрегата, водяного насоса, маслоотделителя и маслосборника, приборов охлаждения.

    дипломная работа , добавлен 26.12.2013

    Анализ технологической схемы и выбор методов и средств автоматизации. Синтез системы автоматического регулирования температуры в сыродельной ванне. Обоснование структуры математической модели сыродельной ванны как объекта регулирования температуры.

    курсовая работа , добавлен 02.02.2011

    Общая характеристика и принцип действия сушилки Т-4721D, предназначенной для сушки ПВХ. Теплообменные процессы в сушилке. Инженерный анализ технологического процесса как объекта автоматизации. Разработка функциональной схемы автоматизации процесса сушки.

Компрессионная холодильная машина

Хладоносители

Холодильные агенты

Процессы и способы охлаждения

Назначение холодильного оборудования

1. Назначение холодильного оборудования

Холод является самым распространенным и надежным способом консервирования, так как позволяет практически полностью сохранить все первоначальные; свойства продукта.

Под обработкой холодом понимают охлаждение и замораживание пищевых продуктов. Если в центре продукта температура равна О...+4С, продукт считается охлажденным, если же в центре продукта температура равна -8°С и ниже - замороженным.

Низкие температуры создают неблагоприятные условия для развития и размножения микроорганизмов и действия ферментов (в случае охлаждения). При замораживании вода переходит в лед, и микроорганизмы лишаются питательной среды, в результате чего 90-99 % из них погибают. Некоторые же микроорганизмы, например бактерии, только прекращают свою жизнедеятельность, но не погибают. Ферменты менее чувствительны к понижению температуры.

Процесс консервирования продуктов холодом связан с отводом тепла от продукта с помощью охлаждающей среды, в качестве которой могут быть жидкости, воздух (газы), твердая углекислота или водный лед.

Однако наряду с положительным влиянием консервирования холодом имеются и отрицательные моменты - это потеря влаги продуктом (усушка), незначительное снижение качества продукта в результате образования корочки подсыхания и возникающей пористости поверхности.

Сроки хранения охлажденных продуктов составляют от нескольких суток до нескольких месяцев. Для увеличения сроков хранения мясных, молочных, рыбных и других продуктов их завораживают. Сроки хранения замороженных продуктов составляют от нескольких месяцев до нескольких лет. Это позволяет создавать определенные запасы продуктов и обеспечивать продуктами население страны круглогодично.

2. Процессы и способы охлаждения

Охлаждение, как и нагрев, основано на теплообмене - это самопроизвольный переход тепла от тела с большей температурой к телу с меньшей температурой.

Для охлаждения используются процессы, протекающие с поглощением тепла из окружающей среды : таяние или растворение; кипение или испарение; сублимация и др.

Охлаждение бывает естественным и искусственным.

Естественным охлаждением называется теплообмен между охлаждаемым телом и окружающей средой - наружным воздухом и водой естественных водоемов. Однако при таком охлаждении температуру охлаждаемого тела можно понизить только до температуры окружающей среды. Для получения более низких температур применяют смесь льда с поваренной солью. Однако лед или смесь льда с солью воспринимают тепло охлаждаемых продуктов, изменяют свое агрегатное состояние и теряют охлаждающую способность.



К искусственному относится охлаждение «сухим льдом», а также с помощью кипящих жидких газов и термоэлектричества. Достоинством искусственного охлаждения является возможность поддержания заданного режима хранения в любое время года.

Охлаждение с помощью холодильных машин называетсямашинным охлаждением .

Под низкими температурами, как правило, понимают температуры ниже окружающей среды. В холодильном оборудовании предприятий торговли и общественного питания этот диапазон составляет от 0 до -40°С.

Низкие температуры получают в результате физических процессов, которые сопровождаются поглощением теп-

ла. К числу основных таких процессов относится:

Ø фазовый переход вещества - плавление, кипение (испарение), сублимация;

Ø адиабатическое расширение газа;

Ø дросселирование реального газа и жидкостей;

Ø термоэлектрический эффект (эффект Пельтье).

3. Холодильные агенты

Один из основных вопросов, возникающих при создании холодильных машин (далее - ХМ), - выбор холодильных агентов, которые способствовали бы надежной и экономичной работе машины в заданном температурном диапазоне.

Рабочие вещества, предназначенные для ХМ, должны отвечать следующим основным требованиям:

Обладать химической стабильностью и инертностью к основным конструкционным материалам и смазочным маслам;

Иметь допустимые значения рабочих давлений, разности и отношения давлений нагнетания и всасывания;

Не оказывать отрицательных воздействий на окружающую среду и человека;

Быть негорючими и взрывобезопасными;

Иметь высокую степень термодинамического совершенства, большую объемную холодопроизводительность;

Обладать благоприятным сочетанием теплофизических свойств, влияющих на массу и габариты теплообменной аппаратуры;

Выпускаться промышленностью и иметь относительно низкую стоимость.

Как правило, в ХМ применяют рабочие вещества, удовлетворяющие лишь наиболее важным требованиям. Кроме перечисленных, немаловажным требованием, которое предъявляется к холодильным агентам, является безопасность эксплуатации холодильного оборудования.

Рабочие вещества холодильных машин (называемые чаще рефрижераторами от английского «Refrigerant» и обозначаемые по международному стандарту ISO N°817-74 буквой «R» с добавлением индивидуального для каждого вещества цифрового обозначения), используются для осуществления обратных термодинамических циклов. Кроме чистых хладагентов все чаще находят применение их смеси, поэтому общее число хладагентов насчитывает несколько десятков.

К наиболее широко применяемым хладагентам в настоящее время относятся аммиак (хладагент R7I7) и хладоны (по старой классификации фреоны) - хладагенты R12, R22, R134a и R404A|

Несмотря на токсичность и взрывоопасность, аммиак в силу своих отличных термодинамических свойств и низкой стоимости продолжает использоваться на крупных пищевых производствах и предприятиях общественного питания, где потребность более 100 кВт. Развитие подобных систем холодоснабжения по линии внедрения холодильных машин с уменьшенной емкостью по этому хладагенту (менее 100 кг) и полной автоматизацией защиты. Однако и на относительно небольших торговых предприятиях, в том числе и в супермаркетах, уже используются малые аммиачные машины (Дания, Чехия и другие страны).

Наиболее широко на малых и средних предприятиях торговли и общественного питания применяются хладоны. Однако полной однозначности в выборе того или иного хладона в настоящее время нет. Это объясняется следующим. Еще в 1974 г. американские физики (ныне Нобелевские лауреаты) Ш. Роуленд и М. Молина обнаружили, что большинство из традиционно используемых хладонов (в том-числе R11, R12, R113, R502 и в значительно меньшей степени R22) при попадании в стратосферу активно разрушают озоновый слой Земли, задерживающий ультрафиолетовое излучение Солнца. Учитывая эту глобальную опасность, правительство СССР в 1987 г. подписало Монреальский протокол о постепенном запрете озоноразрушающих хладагентов. В соответствии с этим соглашением с 1 января 1996 г. в России запрещено использование в новом оборудовании широко применявшихся ранее хладагентов R12 и R502, а с 1999 г. полностью запрещено их производство. Хладагент R22 разрешен к применению в России до 2020 г. Полноценных заменителей этих хладонов в мире пока не найдено, однако в настоящее время считается, что наиболее вероятной заменой будут в среднетемпературном оборудовании и кондиционерах- хладагент R134а, в низкотемпературном оборудовании - хладагент R404A. Поэтому в подавляющем большинстве случаев, официально импортируемое Россией после 1996г. торгово-технологическое холодильное оборудование имеет заправку одним из четырех перечисленных выше хладагентов: аммиаком (R717) или хладонами R22, R134а и R404A.

Ниже приведены основные свойства этих хладагентов.

1. Аммиак. Формула NH 3 . Торговое название хладагента R717. Бесцветный газ с характерным резким запахом. Токсичен, сильно раздражает слизистые оболочки глаз и дыхательных путей, ПДК 20 мг/м 3 . Пожаро- и взрывоопасен. Класс опасности 1. Хорошо растворим в воде. Химически инертен по отношению к черным металлам и бронзе, однако в присутствии влаги реагирует с медью и медно-цинковыми сплавами, а также быстро ухудшает качество смазочных масел. На порядок дешевле хладонов. Давление конденсации при +30°С равно 1,168 МПа; температура кипения при атмосферном давлении -33,34°С, теплота парообразования 1369,7 кДж/кг.

2. R22 - дифторхлорметан. Формула CFCIH. Бесцветный газ со слабым запахом трихлорметана. Нетоксичен, ПДК 3000 мг/м 3 . Негорюч. Класс опасности 4. Плохо растворим в воде, поэтому холодильная система требует тщательной осушки. Хороший растворитель органики и резины, инертен к большинству металлов. Давление конденсации при +30°С равно 1,191 МПа; температура кипения при атмосферном давлении -40,81°С, теплота парообразования 233,2 кДж/кг.

3. R134a. 1,1,1,2-тетрафторэтан. Формула CFCFH. Бесцветный газ. ПДК в настоящее время неустановлен. Трудногорюч. Класс опасности 4. Инертен к большинству металлов. Давление конденсации при +30°С равно 0,773 МПа; температура кипения при атмосферном давлении - 26,5°С, теплота парообразования 216,5 кДж/кг.

4. R404A (иногда обозначается НР62) - неазеотропная смесь чистых хладагентов R125/I43a/134a в пропорции 44:52:4 по массовым долям, поэтому кипение в испарителе происходит при переменной температуре (изменение температуры по длине аппарата около 5°С). Температура кипения при атмосферном давлении -4б,5°С, теплота парообразования близка к таковой для хладона R22. Высокое давление конденсации (≈ 2-2,8 МПа) предъявляет высокие требования к качеству монтажных работ.

Различают естественные и искусственные холодильные агенты. К естественным хладагентам относятся: аммиак (R717), воздух (R729), вода (R718), углекислота (R744) и др., к искусственным - хладоны (смеси различных фреонов).

Фреоны - углеводороды (СН 4 , С 2 Н 6 , С 3 Н 8 и С 4 Н 10), в которых водород полностью или частично заменен фтором и хлором (в отдельных случаях бромом). Международным стандартом принято краткое обозначение всех холодильных агентов, состоящее из символа R (Refrigerant - хладагент) и определяющей цифры. Например, фреон-12 имеет обозначение R12. Поэтому насегодня все фреоны принято обозначать в международной символике, отсюда и их название - хладоны.

По термодинамическим свойствам наилучшим природным холодильным агентом считается аммиак. Поэтому в настоящее время на крупных холодильных установках с умеренно низкими температурами (-15...-25С) наиболее распространен аммиак.

По степени озоноразрушающей активности хладагенты

делят на две группы:

¨ хладагенты с высокой озоноразрушающей активностью (ODP1,0);

¨ хладагенты с низкой озоноразрушающей активностью (ODP <0,1).

К первой группе относятся хладоны R11, R12, R2З, R11З, R114, R115, R500, R501 и др.

Ко второй группе относятся менее озонобезопасные хладоны R21, R22, R23, R30, R40, R123, R124, R140 а, R160 и др. Молекулы каждого из названных хладонов содержат атом водорода и поэтому при гидролизе и пиролизе молекул хладонов в первую очередь образуется соляная кислота НС1, и в редких случаях при определенных условиях может выделиться несколько молекул свободного хлора. Этим и объясняется их низкая озонобезопасность.

Хладоны, не содержащие атомов хлора, являются полностью озонобезопасными.

4. Хладоносители

В холодильной технике хладоносители используют в тех случаях, когда по различным причинам применять систему непосредственного охлаждения камер нецелесообразно. Такими причинами, как правило, являются: значительная удаленность холодильных камер от машинного отделения, низкая температура кипения хладона в испарителе (воздухоохладителе), охлаждение одним холодильным агрегатом нескольких камер с большим различием температур в камерах, воздействие на систему охлаждения внешних сил (рефрижераторные суда).

Хладоносителем называют вещество, которое отбирает теплоту из одной части холодильной установки и отдает его другой, не меняя при этом своего агрегатного состояния. Вещество, выбранное в качестве хладоносителя, должно иметь низкую температуру замерзания, малые вязкость и плотность, высокие теплопроводность и теплоемкость, быть безопасным и безвредным, химически стойким, инертным по отношению к металлам, а также недефицитным и недорогим. Почти всею этим требованиям отвечает вода. Однако сравнительно высокая температура замерзания воды ограничивает область ее применения.

В качестве хладоносителей применяют растворы хлористого натрия, хлористого магния или хлористого кальция, которые называют рассолами, а также растворы этиленгликоля (антифриз), RЗО, дихлорметан (СН 2 С1 2) и др.

Недостатком рассолов является их коррозионное воздействие на металлы, которое резко усиливается в открытых системах из-за контакта воздуха (кислорода) с рассолом. Для уменьшения коррозии к рассолам добавляют вещества, которые называют пассиваторами. Это хромат натрия с едким натром.

Этиленгликоль. Для получения температур ниже -55°С использовать рассолы нельзя. В этом случае в качестве промежуточных хладоносителей используют водный раствор этиленгликоля (антифриз). Чистый этиленгликоль С 2 Н 4 (ОН) 2 имеет температуру замерзания всего -17,5°С. Поэтому применяют водные растворы этиленгликоля, температуры замерзания которых зависят от массовой доли этиленгликоля. Растворы этиленгликоля применяют в диапазоне температур кипения от -40 до -60°С. Этиленгликоль оказывает значительное коррозионное воздействие на металлы, поэтому для уменьшения такого отрицательного воздействия в раствор добавляют вещества, называемые пассиваторами.

R30 и спирты. Благодаря низкой температуре замерзания (-96°С) и малой вязкости широкое применение в качестве хладоносителя получил хладон-30. Его применяют в диапазоне температур от -40 до - 90°С. Спирты имеют более низкие температуры замерзания: этиловый спирт (-117°С), пропиловый спирт (-127С). Метиловый спирт (-97,8°С) ядовит и применять его в качестве хладоносителя не рекомендуется. Учитывая некоторые отрицательные качества рассолов, ученые постоянно ведут поиски новых видов теплоносителей.

5. Компрессионная холодильная машина

Из всех способов охлаждения наибольшее применение получило охлаждение с помощью холодильных машин (машинное охлаждение), при котором используется принцип кипящих жидких газов. Работа холодильной машины полностью автоматизирована, что дает следующие преимущества: удобство в эксплуатации, безопасность работы обслуживающего персонала, возможность соблюдения требуемого температурного режима для различных видов продуктов, а также режима экономии.

Холодильная машина - это кольцевая герметически замкнутая система, по которой циркулирует одно и то же количество рабочего вещества, называемого холодильным агентом. Хладагент в машине лишь меняет свое физическое состояние.

В торговом машиностроении применяются холодильные машины двух видов: компрессионная и абсорбционная, в которых используются различные способы обеспечения циркуляции хладагента. В компрессионной холодильной машине для циркуляции хладагента затрачивается механическая энергия, а в абсорбционной - тепловая. Наибольшее распространение получила компрессионная холодильная машина.

Компрессионная холодильная машина состоит из четырех основных частей: испарителя, компрессора, конденсатора и терморегулирующего вентиля (ТРВ).

Охлаждение может быть естественным или принудительным, как это показано на рис. 28.1.

Компрессор холодильной машины предназначен для осуществления следующих процессов: всасывания паров хладагента из испарителя, адиабатического их сжатия и нагнетания в конденсатор. На рис. 31.2 – 31.6 представлены виды компрессоров холодильной машины.

Всасывание компрессором паров из испарителя. Испарители (воздухоохладители), расположенные в охлаждаемой среде (камере), при работающей холодильной установке имеют наинизшую температуру по сравнению с другими телами, находящимися в камере. В трубках испарителя (воздухоохладителя) находится хладагент, температура кипения которого зависит от давления. Образующиеся пары в испарителе постоянно отводятся компрессором, что обеспечивает постоянное давление и соответственно постоянную температуру кипения хладагента.

Если же тепловая нагрузка на испаритель резко возрастает (при внесении продуктов в камеру), то давление в испарителе возрастает. Соответственно возрастет и температура кипения, а тепловая нагрузка на испаритель снизится из-за уменьшения разности температур между воздухом в холодильной камере и поверхностью испарителя. Возрастание давления в испарителе приведет к увеличению плотности паров и повышению производительности компрессора. Давление и температура кипения хладагента в испарителе начнут понижаться. Если же теплопритоки на испаритель сильно уменьшатся (произошло полное охлаждение продуктов), то и количество пара в испарителе будет очень Незначительным, т.е. в испарителе практически не будет шаров, а, следовательно, компрессору нечего отводить из испарителя и он автоматически выключается.

Итак, работа компрессора по всасыванию паров обеспечивает определенное давление и соответственно температуру кипения хладагента в испарителе. Компрессор, забитая пары из испарителя, фактически выводит тепло из камеры.

Адиабатическое сжатие паров в компрессоре необходимо для повышения их температуры. Температура пара в конце сжатия должна быть обязательно выше температуры охлаждающей среды в конденсаторе для того, чтобы пары затем можно было охладить. При охлаждении пар переходит в жидкость.

Нагнетание паров. Если давление (и температура) при сжатии будут ниже, чем температура охлаждающей среды, то такие пары, поступая в конденсатор, охлаждаться не будут. Давление в конденсаторе снижаться не будет. Компрессор, выталкивая из цилиндра очередной объем пара, должен преодолеть большое сопротивление в конденсаторе, а для этого пары необходимо сжимать до такого давления, которое больше давления в конденсаторе. Повышение давления приводит к соответствующему росту температуры. Давление растет до тех пор, пока температура пара не превысит температуру охлаждающей среды.

Процессы холодильного цикла связаны с различными видами теплообмена: в испарителе хладагент отбирает тепло от воздуха охлаждаемой камеры или от хладоносителя, в конденсаторе тепло передается охлаждающей среде (воде или воздуху). Испаритель и конденсатор - основные тепло-обменные аппараты.

Испаритель (рис. 31.6) - это аппарат, в котором жидкий хладагент кипит при низком давлении, отводя тепло от охлаждаемого объекта (продуктов). Чем ниже давление, поддерживаемое в испарителе, тем ниже температура кипящее жидкости. Температуру кипения, как правило, поддержи-вают на 10-15°С ниже температуры воздуха в камере. Температура воздуха в камере зависит от вида охлаждаемого продукта. Испаритель может быть расположен непосредственно в охлаждаемом объеме (камере, шкафе), как показано на рис. 28.1, или же находится за его пределами. В соответствии с этим по назначению различают испарители для непосредственного охлаждения среды и испарителя для охлаждения промежуточного хладоносителя (вода, рассол, воздух, этиленгликоль и др.). Конструкция испарителя зависит от вида охлаждающей среды, необходимой холодопроизводительности, свойств самого хладагента и от температурного напора между средами. На рис. 31.7 представлен процесс изменение температуры кипения холодильного агента в испарителе во времени.

Конденсатор - аппарат, предназначенный для осуществления теплообмена между хладагентом и охлаждающей средой. В процессе теплообмена от хладагента отводится энергия, которая передается охлаждающей среде, а сам хладагент охлаждается и конденсируется. Охлаждающая же среда нагревается. В зависимости от вида охлаждающей среды различают конденсаторы с воздушным и водяным охлаждением.

Терморегулирующий вентиль (ТРВ) обеспечивает заполнение испарителя жидким хладагентом в оптимальных пределах. Переполнение испарителя может привести к его попаданию в компрессор и к поломке, а его малое заполнение резко снижает эффективность работы испарителя.

Степень заполнения испарителя зависит от температуры перегрева пара на выходе из испарителя. ТРВ производит сравнение температуры пара на выходе из испарителя с заданной и в зависимости от величины расхождения увеличивает или уменьшает поток жидкого хладагента в испаритель.

Кроме вышеперечисленных основных частей холодильная машина оснащена другими частями: приборами автоматики, пускозащитной электроаппаратурой, теплообменниками, фильтром-осушителем, ресивером.

6. Приборы автоматики холодильных машин

Автоматизацией называется комплекс технических мероприятий, позволяющих полностью или частично исключить участие человека в управлении процессом.

Охлаждаемый объем рассматривается как объект, в котором должен поддерживаться постоянный температурный режим. Поскольку время суток и время года влияют на температуру окружающего воздуха, а температура воздуха в камере должна быть одной и той же, то количество тепла, поступающего в камеру через ограждения (стены, пол, потолок), постоянно изменяется. Повышение температуры воздуха в камере уменьшает сроки хранения продуктов, а значительное ее снижение приводит не только к перерасходу электроэнергии, но и к замораживанию продуктов. Поэтому автоматизация установки должна предусматривать изменение режима работы испарителя в зависимости от тепловой нагрузки. Приборы автоматики должны обеспечивать не только эффективную, но и надежную работу всех элементов холодильной машины.

Автоматизация холодильных машин осуществляется по трем основным направлениям: автоматизация процессов регулирования с помощью систем; автоматизация защиты; автоматизация сигнализации.

Автоматизация холодильных установок предполагает оснаще­ние их автоматическими устройствами (приборами и средствами автоматизации), с помощью которых обеспечиваются безопасная работа и проведение производственного процесса или отдельных операций без непосредственного участия обслуживающего персо­нала или с частичным его участием.

Объекты автоматизации совместно с автоматическими устрой­ствами образуют системы автоматизации с различными функция­ми: контроля, сигнализации, защиты, регулирования и управле­ния. Автоматизация повышает экономическую эффективность ра­боты холодильных установок, так как уменьшается численность обслуживающего персонала, снижается расход электроэнергии, воды и других материалов, увеличивается срок службы установок вследствие поддержания автоматическими устройствами оптималь­ного режима их работы. Автоматизация требует капитальных зат­рат, поэтому проводить ее надо, основываясь на результатах тех­нико-экономического анализа.

Холодильную установку можно автоматизировать частично, полностью или комплексно.

Частичная автоматизация предусматривает обязательную для всех холодильных установок автоматическую защиту, а также кон­троль, сигнализацию и нередко управление. Обслуживающий пер­сонал регулирует основные параметры (температура и влажность воздуха в камерах, температура кипения и конденсации холодиль­ного агента и т.д.) при отклонении их от заданных значений и нарушении работы оборудования, о чем информируют системы контроля и сигнализации, а некоторые вспомогательные периоди­ческие процессы (оттаивание инея с поверхности охлаждающих приборов, удаление масла из системы) выполняются вручную.

Полная автоматизация охватывает все процессы, связанные с поддержанием требуемых параметров в охлаждаемых помещениях и элементах холодильной установки. Обслуживающий персонал может присутствовать лишь периодически. Полностью автомати­зируют небольшие по мощности холодильные установки, безот­казные и долговечные.

Для крупных промышленных холодильных установок более ха­рактерна комплексная автоматизация (автоматические контроль, сигнализация, защита).

Автоматический контроль обеспечивает дистанционное измерение, а иногда и запись параметров, определяющих режим работы оборудования.

Автоматическая сигнализация - извещение с помощью звукового или светового сигнала о достижении заданных величин, тех или иных параметров, включении или выключении элементов, холодильной установки. Автоматическую сигнализацию подразделяют на технологическую, предупредительную и аварийную.

Технологическая сигнализация - световая, информирует о ра­боте компрессоров, насосов, вентиляторов, наличии напряжения в электрических цепях.

Предупредительная сигнализация на защитных, циркуляционных ресиверах сообщает, что величина контролируемого парамет­ра приближается к предельно допустимому значению.

Аварийная сигнализация световым и звуковым сигналами извещает о том, что сработала автоматическая защита.

Автоматическая защита, обеспечивающая безопасность обслуживающего персонала, обязательна для любого производства. Она предотвращает возникновение аварийных ситуаций, выключая отдельные элементы или установку в целом, когда контролируе­мый параметр достигает предельно допустимого значения.

Надежную защиту в случае возникновения опасной ситуации должна обеспечивать система автоматической защиты (САЗ). В простейшем варианте САЗ состоит из датчика-реле (реле защиты), контролирующего величину параметра и вырабатывающего сигнал при достижении ее предельного значения, и устройства, преобразующего сигнал реле защиты в сигнал остановки, который направляется в систему управления.

На холодильных установках большой мощности САЗ выполняют так, чтобы после срабатывания реле защиты автоматический пуск отказавшего элемента без устранения вызвавшей остановку причины был невозможен. На небольших холодильных установ­ках, например на предприятиях торговли, где авария не может привести к тяжелым последствиям, нет постоянного обслуживания, объект включается автоматически, если величина контролирусмоге параметра возвращается в допустимую область.

Наибольшее число видов защиты имеют компрессоры, посколь­ку по опыту эксплуатации 75 % всех аварий на холодильных установках происходят именно с ними.

Число параметров, контролируемых САЗ, зависит от типа, мощности компрессора и вида холодильного агента.

Виды защиты компрессоров:

от недопустимого повышения давления нагнетания - пре­дотвращает нарушение плотности соединений или разрушение элементов;

недопустимого понижения давления всасывания - предотвра­щает повышение нагрузки на сальник компрессора, вспенивание масла в картере, замерзание хладоносителя в испарителе (реле высокого и низкого давления, оснащают практически все комп­рессоры);

уменьшения разности давлений (до и после насоса) в масля­ной системе - предотвращает аварийный износ трущихся дета­лей и заклинивание механизма движения компрессора, реле раз­ности давлений контролирует разность давлений на стороне на­гнетания и всасывания масляного насоса;

недопустимого повышения температуры нагнетания - предот­вращает нарушение режима смазки цилиндра и аварийный износ трущихся деталей;

повышения температуры обмоток встроенного электродвига­теля герметичных и бессальниковых хладоновых компрессоров - предотвращает перегрев обмоток, заклинивание ротора и работу на двух фазах;

гидравлического удара (попадание жидкого холодильного агента в полость сжатия) - предотвращает серьезную аварию поршневого компрессора: нарушение плотности, а иногда и разрушение.

Виды защиты других элементов холодильной установки:

от замерзания хладоносителя - предотвращает разрыв труб ис­парителя;

переполнения линейного ресивера - предохраняет от сниже­ния эффективности конденсатора в результате заполнения части его объема жидким холодильным агентом;

опорожнения линейного ресивера - предотвращает прорыв газа высокого давления в испарительную систему и опасность гидрав­лического удара.

Предотвращение аварийной ситуации обеспечивает защита от недопустимой концентрации аммиака в помещении, что может вызвать пожар и взрыв. Концентрация аммиака (максимум 1,5 г/м 3 , или 0,021 % по объему) в воздухе контролируется газоанализатором.

Автоматизация холодильных установок предполагает оснащение их автоматическими устройствами (приборами и средствами автоматизации), с помощью которых обеспечиваются безопасная работа и проведение производственного процесса или отдельных операций без непосредственного участия обслуживающего персонала или с частичным его участием.

Объекты автоматизации совместно с автоматическими устройствами образуют системы автоматизации с различными функциями: контроля, сигнализации, защиты, регулирования и управления. Автоматизация повышает экономическую эффективность работы холодильных установок, так как уменьшается численность обслуживающего персонала, снижается расход электроэнергии, воды и других материалов, увеличивается срок службы установок, вследствие поддержания автоматическими устройствами оптимального режима их работы. Автоматизация требует капитальных затрат, поэтому проводить ее надо, основываясь на результатах технико-экономического анализа.

Холодильную установку можно автоматизировать частично, полностью или комплексно.

Частичная автоматизация предусматривает обязательную для всех холодильных установок автоматическую защиту, а также контроль, сигнализацию и нередко управление. Обслуживающий персонал регулирует основные параметры (температуру и влажность воздуха в камерах, температуру кипения и конденсации холодильного агента и т.д.) при отклонении их от заданных значений и нарушении работы оборудования, о чем информируют системы контроля и сигнализации, а некоторые вспомогательные периодические процессы (оттаивание инея с поверхности охлаждающих приборов, удаление масла из системы) выполняются вручную.

Полная автоматизация охватывает все процессы, связанные с поддержанием требуемых параметров в охлаждаемых помещениях и элементах холодильной установки. Обслуживающий персонал может присутствовать лишь периодически. Полностью автоматизируют небольшие по мощности холодильные установки, безотказные и долговечные.

Для крупных промышленных холодильных установок более характерна комплексная автоматизация автоматические контроль, сигнализация, защита).

Автоматический контроль обеспечивает дистанционное измерение, а иногда и запись параметров, определяющих режим работы оборудования.

Автоматическая сигнализация - извещение с помощью звукового и светового сигнала о достижении заданных величин, тех или иных параметров, включении или выключении элементов холодильной установки. Автоматическую сигнализацию подразделяют на технологическую, предупредительную и аварийную.

Технологическая сигнализация - световая, информирует о работе компрессоров, наличии напряжения в электрических цепях.

Предупредительная сигнализация на защитных, циркуляционных ресиверах сообщает, что величина контролируемого параметра приближается к предельно допустимому значению.

Аварийная сигнализация световым и звуковым сигналами извещает о том, что сработала автоматическая защита.

Автоматическая защита, обеспечивающая безопасность обслуживающего персонала, обязательная для любого производства. Она предотвращает возникновение аварийных ситуаций, выключая отдельные элементы или установку в целом, когда контролируемый параметр достигает предельно допустимого значения.

Надежную защиту в случае возникновения опасной ситуации должна обеспечивать система автоматической защиты (САЗ). В простейшем варианте САЗ состоит из датчика-реле (реле защиты), контролирующего величину параметра и вырабатывающего сигнал при достижении ее предельного значения, и устройства, преобразующего сигнал реле защиты в сигнал остановки, который направляется в систему управления.

На холодильных установках большой мощности САЗ выполняют так, чтобы после срабатывания реле защиты автоматический пуск отказавшего элемента без устранения вызвавшей остановку причины был невозможен. На небольших холодильных установках, например на предприятиях торговли, где авария не может привести к тяжелым последствиям, нет постоянного обслуживания, объект включается автоматически, если величина контролируемого параметра возвращается в допустимую область.

Наибольшее число видов защиты имеют компрессоры, поскольку по опыту эксплуатации 75% всех аварий на холодильных установках происходит именно с ними.

Число параметров, контролируемых САЗ, зависит от типа мощности компрессора и вида холодильного агента.

Вида защиты компрессоров:

От недопустимого повышения давления нагнетания - предотвращает нарушение плотности соединений или разрушение элементов;

Недопустимого понижения давления всасывания - предотвращает повышение нагрузки на сальник компрессора, вспенивание масла в картере, замерзание хладоносителя в испарителе (реле высокого и низкого давления, оснащают практически все компрессоры);

Уменьшения разности давлений (до и после насоса) в масляной системе - предотвращает аварийный износ трущихся деталей и заклинивание механизма движения компрессора, реле разности давлений контролирует разность давлений на стороне нагнетания и всасывания масляного насоса;

Недопустимого повышения температуры нагнетания -предотвращает нарушение режима смазки цилиндра и аварийный износ трущихся деталей;

Повышения температуры обмоток встроенного электродвигателя герметичных и бессальниковых хладоновых компрессоров - предотвращает перегрев обмоток, заклинивание ротора и работу на двух фазах;

Гидравлического удара (попадание жидкого холодильного агента в полость сжатия) - предотвращает серьезную аварию поршневого компрессора: нарушение плотности, а иногда и разрушение.

Виды защиты других элементов холодильной установки:

  • - от замерзания хладоносителя - предотвращает разрыв труб испарителя;
  • - переполнения линейного ресивера - предохраняет от снижения эффективности конденсатора в результате заполнения части его объема жидким холодильным агентом;
  • - опорожнения линейного ресивера - предотвращает прорыв газа высокого давления в испарительную систему и опасность гидравлического удара.

Предотвращение аварийной ситуации обеспечивает защита от недопустимой концентрации аммиака в помещении, что может вызвать пожар и взрыв. Концентрация аммиака (максимум 1,5 г/м.куб., или 0,021% по объему) в воздухе контролируется газоанализатором.

ЛЕКЦИЯ 9

Тема «КИП и автоматика холодильной машины»

Цель: Изучить устройство и принцип действия контрольно-измерительных приборов и приборов автоматики холодильных машин вагонов

1. Холодильные машины и установки конддиционированяе воздуха. Пигарев В.Е., Архипов П.Е. М., Маршрут, 2003.

2. Обучающая контролирующая программа «Кондиционирование воздуха в пассажирском вагоне».

План лекции:

1. Принципы автоматизации холодильных установок.

2. Основные понятия об автоматическом регулировании

приборов автоматики.

4. Регуляторы заполнения испарителя хладагентом.

Принципы автоматизации холодильных установок

Параметры окружающей среды - температура, влажность, направление и сила ветра, осадки, солнечная радиация непрерывно изменяются в течение суток, а также вследствие быстрого перемещения вагона. Соответственно изменяется и тепловая нагрузка на вагон. Чтобы в этих условиях поддерживать стабильные параметры воздуха внутри вагона, необходимо непрерывно изменять производительность системы охлаждения (летом) или отопления (зимой), а если это необходимо, то и производительность системы вентиляции. Следовательно, как бы совершенны ни были сами по себе системы вентиляции, отопления, охлаждения и электроснабжения и как бы хорошо ни были согласованы их параметры между собой и с тепловыми нагрузками на вагон, установка кондиционирования воздуха не сможет обеспечить комфортных условий в вагоне, если её управление не будет автоматизировано, а холодильная машина обеспечивать требуемую тепловую обработку скоропортящегося груза и поддерживавать заданный температурный режим охлаждаемого помещения. На рефрижераторном подвижном составе применяются холодильные установки, автоматизированные полностью или частично. Степень автоматизации холодильной установки выбирается в зависимости от ее конструкции, размеров и условий эксплуатации. В полностью автоматизированных установках пуск, отключение машин и регулирование холодопроизводительности осуществляются автоматически без вмешательства обслуживающего персонала. Такими установками оборудованы АРВ и секции ZB -5. Для полной автоматизации требуются большие первоначальные затраты и последующие расходы на обслуживание сложных аппаратов и приборов. Однако полная автоматизация холодильных установок АРВ позволила отказаться от сопровождения вагонов в пути следования обслуживающим персоналом и перейти на периодическое их техническое обслуживание на специализированных пунктах (ПТО АРВ).

При эксплуатации частично автоматизированных холодильных установок необходимо постоянное дежурство обслуживающего персонала. Наличие персонала позволяет отказаться от автоматизации включения и выключения холодильной машины, процесса оттаивания воздухоохладителя и др. В результате достигается значительное снижение первоначальных затрат. Защитная же автоматика в таких машинах должна предусматриваться в полном объеме, как и для полностью автоматизированной установки.


Из частично автоматизированных установок условно выделяют полуавтоматизированные установки, в которых включение и выключение оборудования выполняет вручную механик, а поддержание установленного режима работы осуществляют приборы автоматики. К полуавтоматизированным холодильным установкам относятся установки 5- вагонной секции БМЗ.

Автоматизированные холодильные установки всегда работают в оптимальном режиме. Это позволяет сократить время достижения требуемой температуры в грузовом помещении, увеличить за счет этого межремонтные сроки эксплуатации оборудования и снизить расход электроэнергии. Автоматизированная холодильная установка точнее поддерживает заданный температурный режим в охлаждаемом помещении, чего невозможно достигнуть при ручном регулировании. Это позволяет сохранить качество перевозимых грузов и уменьшить их потери при транспортировке. Система автоматизации надежно защищает холодильную установку от опасных режимов работы, увеличивая срок ее службы и обеспечивая безопасность для обслуживающего персонала. Автоматизация повышает культуру производства, улучшает и облегчает условия труда обслуживающего персонала. Практически обязанности поездной бригады сводятся к периодическим осмотрам и проверкам режима работы оборудования и к устранению выявленных неисправностей. Естественно, системы автоматики различны. Применительно к системам автоматики установки кондиционирования воздуха можно классифицировать по трем признакам: по регулируемым параметрам воздуха: по температуре или по влажности, или по обоим этим параметрам, т.е. по теплосодержанию; по характеру процесса обработки воздуха: мокрые камеры увлажнения и осушки с непосредственным разбрызгиванием и фильт189 рацией паровоздушной смеси, или камеры со смачиванием поверхности и также непосредственным тепломассообменом, или камеры с применением теплообмена через холодную (или горячую) стенку, охлаждаемую холодной водой или рассолом (нагреваемую горячей водой или рассолом), или камеры с воздухоохладителями непосредственного охлаждения, или камеры с твердыми или жидкими влагопоглотителями - адсорбентами; по схеме обработки воздуха: прямоточные камеры (без использования рециркуляции), или камеры с постоянной или переменной величиной первичной рециркуляции, или камеры с двойной рециркуляцией постоянной или переменной. Специальное устройство для регулирования влажности (специальная осушка воздуха осуществляется более глубоким его охлаждением, чем необходимо для поддержания температурного режима с последующим подогревом) в вагонных установках кондиционирования воздуха не применяется. Летом, когда требуется осушка воздуха, она выполняется одновременно с процессом его охлаждения в воздухоохладителе. Зимой, когда необходимо увлажнение воздуха, оно осуществляется за счет влаговыделения пассажиров. Таким образом, по первому признаку процесс автоматического регулирования работы вагонных установок кондиционирования является наиболее простым и сводится к поддержанию температуры в помещениях вагона в заданных пределах. Мокрые камеры, твердые и жидкие адсорбенты, теплообмен с помощью водяного или рассольного охлаждения в пассажирских вагонах не применяются. Из этого следует, что и по второму признаку системы автоматики вагонных кондиционеров довольно просты. Ни переменная, ни тем более двойная рециркуляция как постоянная, так и переменная, в вагонах не применяется. Наличие рециркуляции с постоянным соотношением наружного и рециркуляционного воздуха усложняет лишь систему вентиляции, не внося каких-либо из-менений в систему автоматического управления. Таким образом, и по третьему признаку, а значит, и в целом системы автоматики установок кондиционирования пассажирских вагонов по сравнению с системами автоматики других кондиционеров как комфортных, так и технологических, являются относительно простыми. Для поддержания температуры в охлаждаемом помещении в заданном интервале приходится регулировать холодопроизводительность установки, рассчитанную на максимальную потребность в холоде. Регулиро-вание может быть плавным или позиционным (ступенчатым).

Плавное регулирование можно выполнить: плавным изменением частоты вращения вала компрессора; перепуском (байлансированием) пара из нагнетательной линии во всасывающую; изменением рабочего объема компрессора (в винтовых компрессорах); открытием всасывающего клапана на части хода поршня и др. Многие из перечисленных выше способов применяются редко из-за сложности их конструкционного осуществления или из-за значительных энергетических потерь.

Позиционное регулирование можно выполнять изменением коэффициента рабочего времени, т.е. изменением продолжительности работы холодильной установки за цикл. Этот способ широко применяется в системах с большой тепловой аккумулирующей способностью. Позиционное регулирование выполняется также ступенчатым изменением частоты вращения коленчатого вала компрессора, используя многоскоростные электродвигатели. Частоту вращения вала электродвигателя изменяют переключением полюсов статора. На рефрижераторном подвижном составе применяется регулирование холодопроизводительности изменением коэффициента рабочего времени. Цикличная работа холодильной установки достигается периодическими ее включениями и выключениями. Отношение времени работы холодильной установки р к общей продолжительности цикла называется коэффициентом рабочего времени: b = р/ .

Коэффициент рабочего времени можно также определить как отношение теплопритоков в охлаждаемое помещение Q т к холодопроизводительности установки Q 0, т.е. b = Qт /Q 0.

Температуру в охлаждаемом помещении рефрижераторных вагонов обычно регулируют периодическими включениями и отключениями холодильной установки с помощью двухпозиционного автоматического прибора - термостата (реле температуры). При цикличной работе температура в охлаждаемом помещении не остается постоянной, а изменяется в определенных пределах, которые зависят от настройки дифференциала термостата. При увеличении дифференциала продолжительность цикла и пределы колебания температуры увеличиваются. Когда температура в охлаждаемом помещении достигнет верхнего установленного предела, термостат включит холодильную установку. После того как температура в охлаждаемом помещении достигнет нижнего предела, термостат подает электрический импульс на отключение установки. При увеличении теплопритоков в вагон продолжительность работы установки повышается.

2. Основные понятия

об автоматическом регулировании

Система автоматического управления - это совокупность объекта управления и управляющего устройства, осуществляющих какой-нибудь процесс полностью или частично без вмешательства обслуживающего персонала. Объект управления - комплекс технических элементов, выполняющих основную технологическую задачу - характеризуется значениями некоторых величин на его входе и выходе. Если в качестве объекта управления рассматривать рефрижераторный вагон, то величиной на выходе будет температура в грузовом помещении t ваг, а величиной на входе - холодопроизводительность холодильной машины Q 0. Величину на выходе, которую требуется поддерживать в определенном интервале, называют регулируемым параметром и обозначают X 0. Величина на входе объекта - это параметр, с помощью которого управляют значением величины на выходе. Внешнее воздействие на объект управления, вызывающее отклонение регулируемого параметра от исходного значения Х 0, называется нагрузкой. В данном случае это будут теплопритоки в вагон Q н. Действительное значение регулируемого параметра X под воздействием нагрузки Q н отклоняется от заданного значения X 0. Такое отклонение называется рассогласованием: Х=Х – X 0. Воздействие на объект, которое уменьшает рассогласование Х, является регулирующим воздействием. В нашем примере это будет холодопроизводительность машины Q 0. Если Q 0 = Qн , то Х = 0, а регулируемый параметр не изменяется: Х 0 - const.

Устройство, воспринимающее рассогласование АХ и воздействующее на объект для уменьшения рассогласования, называется автоматическим регулятором, или просто регулятором.

Объект и регулятор образуют систему автоматического регулирования (рис. 1).

Рис. 1. Система автоматического регулирования

Регулирование может выполняться по нагрузке и рассогласованию. В первом случае регулятор

воспринимает изменение нагрузки и на столько же изменяет регулирующее воздействие, поддерживая равенство Q 0 = Qн . Однако проще следить за отклонением регулируемого параметра Х 0, т.е. изменять регулирующее воздействие Q 0 в зависимости от значения Х.

Системы автоматизации различаются по своему назначению: управления, сигнализации, защиты, регулирования и комбинированные. Между собой они отличаются составом элементов и связями между, ними. Структурная схема автоматической системы определяет, из каких звеньев она состоит. Например, в систему автоматического регулирования входят объект регулирования и автоматический регулятор, состоящий из нескольких элементов - чувствительного элемента, задающего устройства, элемента сравнения, регулирующего органа и т.д. На рис. 2 показана простая одноконтурная система автоматического регулирования, широко применяющаяся при автоматизации холодильных установок. Работа объекта характеризуется параметром X на выходе, по которому ведется регулирование. На объект воздействует внешняя нагрузка Q н. Управление осуществляется регулирующим воздействием Q 0. Автоматический регулятор должен так изменять величину Q 0, чтобы значение X. соответствовало заданному Х 0. В системе имеются цепи прямой и обратной связи. Цепь прямой связи служит для формирования и передачи к объекту регулирующего воздействия Q 0; по цепи обратной связи поступает информация о ходе процесса. В цепь прямой связи входят усилитель (У), исполнительный механизм (ИМ) и регулирующий орган (РО). В цепь обратной связи включен чувствительный элемент (ЧЭ).

Рис. 2. Структурная схема автоматического регулирования

Обе цепи замыкаются элементом сравнения (ЭС). В регуляторе могут не применяться отдельные элементы (усилитель, исполнительный механизм). Некоторые детали могут выполнять функции нескольких элементов.

Система работает следующим образом. Чувствительным элементом регулятор воспринимает регулируемый параметр X и преобразует его в величину Х 1, удобную для дальнейшей передачи.

Эта преобразованная величина поступает в элемент сравнения, на другой вход которого подается сигнал Х 2, представляющий собой задание регулятору от устройства 3. В элементе сравнения производится операция вычитания, в результате которой получается рассогласование Х = X Х 0.

Сигнал Х заставляет работать остальные элементы схемы. В усилителе его мощность повышается до Х 3 и воздействует на исполнительный механизм, который преобразует этот сигнал в удобный для использования вид энергии X 4 и изменяет положение регулирующего органа. В результате изменяется поток энергии или вещества, подводимого к объекту, т.е. изменяется регулирующее воздействие.

По взятому для примера рефрижераторному вагону можно проследить за взаимодействием элементов структурной схемы (рис. 1 и 2).

Температуру в вагоне X воспринимает термочувствительная система термостата, преобразует ее в давление Х 1 и воздействует на пружину термостата ЭС, отрегулированную на определенное усилие сжатия винтом задающего устройства 3. При повышении температуры в вагоне t ваг в результате теплопритоков Q н увеличивается рассогласование X .

При определенном значении t ваг замыкаются контакты термостата, включающие электрическую систему управления холодильной машиной У, которая получает энергию Е от внешнего источника. Исполнительные механизмы ИМ электрической системы включают холодильную машину РО, которая воздействует величиной Q н на объект. Структурные схемы других автоматических устройств можно получить из рассмотренной схемы. Сигнализирующая система отличается от системы регулирования тем, что в ней нет исполнительного механизма. Цепь прямой связи разрывается, и сигнал Х3 подается обслуживающему персоналу (звонок, включение сигнальной лампы), который и должен произвести регулирование. В системе автоматической защиты вместо исполнительного механизма и регулирующего органа имеется устройство управления, которое отключает холодильную установку. В системах сигнализации и защиты сигнал Х3 изменяется скачкообразно, когда величина X достигает заданного значения. Автоматические регуляторы классифицируются по назначению: регуляторы давления, температуры, уровня и т.д. Они различаются конструкцией чувствительного элемента. Регуляторы бывают прямого и непрямого действия. Если мощность сигнала рассогласования достаточна для воздействия на регулирующий орган, регулятор считается прямодействующим. В регуляторах непрямого действия для привода регулирующего органа используется внешний источник энергии Е (электрический, пневматический, гидравлический, комбинированный), подводимой через усилитель мощности У.

В зависимости от способа воздействия на объект различают регуляторы плавного и позиционного (релейного) действия. В регуляторах плавного действия регулирующий орган может занять любое положение в пределах между максимальным и минимальным. У позиционных регуляторов регулирующий орган может занимать два или несколько определенных положений. По типу задающего элемента регуляторы бывают стабилизирующие, программные, следящие, оптимизирующие. Стабилизирующие регуляторы поддерживают регулируемую величину на постоянном заданном уровне. Программные регуляторы изменяют регулируемую величину по заранее намеченной программе, следящие - в зависимости от изменений какого-нибудь внешнего параметра, Оптимизирующие регуляторы, анализируя внешние параметры, обеспечивают оптимальное ведение процесса. В холодильных установках чаще применяются стабилизирующие регуляторы.

Система регулирования согласовывает характеристики отдельных элементов машины при изменений их холодопроизводительности.

Характеристики представляют собой зависимости холодопроизводительности, расхода энергии на работу компрессора и охлаждение конденсатора от внешних условий, т.е. от температуры окружающей среды. Они позволяют установить взаимную связь параметров компрессора, испарителя и конденсатора. Построение характеристик проводят по уравнениям теплового баланса системы «холодильная машина - охлаждаемое помещение» и энергетическим соотношениям, описывающим работу основных элементов машины с учетом изменения по времени параметров хладагента и окружающей среды. При этом балансовые и энергетические соотношения представляют в функции температуры охлаждаемого объекта (температуры кипения хладагента) и температуры окружающей среды (температуры конденсации хладагента).

Процесс регулирования машины на требуемый режим охлаждения или на заданный температурный режим теоретически может быть реализован количественным или качественным способом. Первый предусматривает изменение расхода хладагента через испаритель, второй - изменение его параметров. Однако температура охлаждаемого объекта определяется температурой кипения хладагента, которая самоустанавливается в зависимости от холодопроизводительности компрессора, испарителя и конденсатора. Поэтому процесс регулирования определяет не только баланс холодопроизводительности компрессора Q oк и испарителя Q ои, но и температурный уровень отвода или подвода теплоты. Следовательно, регулирование паровой компрессорной машины представляет собой комбинированный процесс, сочетающий количественный и качественный способы.

Исполнительным органом системы регулирования (регулятором холодопроизводительности) служит дроссельный вентиль. Рабочий режим машины, который соответствует точке пересечения характеристик компрессора и испарителя Q oк = Q ои, обеспечивают изменением проходного сечения вентиля. Схема согласования характеристик основных элементов машины при некотором постоянном значении температуры окружающей среды приведена на рис. 3.

Характеристика испарителя Q oк =f (T 0) (T 0 - температура кипения хладагента) отвечает изменению теплопритоков охлаждаемого помещения, характеристика компрессора Q ок = f (T 0) - регулированию его производительности, расходная характеристика дроссельного вентиля Q дв= f (T 0) устанавливает степень его закрытия или открытия. Характеристики перечисленных элементов машины при изменении режима ее работы показаны штриховыми линиями. Точка А определяет рабочую точку системы «машина - охлаждаемое помещение» как объекта регулирования при переходе с одного режима работы на другой. При этом точка А ′соответствует рабочему режиму в процессе регулирования компрессора, а точка А ′′- при изменении характеристики испарителя. Регулирование холодопроизводительности машины с поршневым компрессором осуществляют плавным или ступенчатым (позиционным) регулированием его производительности. В машинах малой и средней мощности получили распространение следующие способы плавного регулирования с помощью внешних или встроенных конструктивных устройств: перепуск хладагента со стороны нагнетания на всасывание (балансирование), который осуществляют регулирующими вентилями, управляемыми от датчика давления или температуры; дросселирование на всасывании с переводом компрессора на работу при пониженном давлении всасывания; изменение объема мертвого пространства подключением к нему дополнительного внешнего объема; изменение частоты вращения вала компрессора.

Рис. 3. Характеристики основных элементов холодильной машины

Ступенчатое регулирование в машинах малой и средней холодопроизводительности в основном выполняют способом «пуск-остановка» с предельной частотой циклов до 5-6 в 1 ч; для многоступенчатых компрессоров эффективно используют отключение отдельных цилиндров путем отжатия всасывающих клапанов с помощью механических толкателей. Управление движением толкателей производят гидравлическими, пневматическими или электромагнитными приводами. Внедряется система электронного регулирования производительности с воздействием на всасывающие клапаны электромагнитного поля.

Примером ступенчатого пропорционального регулирования является регулирование температуры воздуха в вагоне летом, когда с увеличением теплопритока в вагон увеличивается холодопроизводительность холодильной установки (увеличиваются частоты вращения вала компрессора или включается большее количество его цилиндров). В этом случае импульсом, сигнализирующим необходимость увеличения холодопроизводительности, является дальнейшее повышение температуры воздуха в вагоне.

Пример пропорционального плавного регулирования - регулирование температуры воздуха в вагоне зимой, когда с увеличением теплопотерь вагона плавно увеличивается температура воды в котле водяного отопления. В этом случае импульсом, сигнализирующим необходимость повышения температуры воды в котле, является изменение температуры наружного воздуха. Наиболее совершенным, но и наиболее сложным видом пропорционального регулирования является изодромное регулирование, основанное на применении чувствительной и гибкой обратной связи, благодаря которой регулируемый параметр изменяется в очень узких пределах или даже держится на практически постоянном уровне. Первоначально изодромное регулирование применялось для обеспечения постоянной скорости вращения деталей машин, откуда и получило свое название (по-гречески изо - постоянный, равный; дромос - бег, скорость). В настоящее время оно применяется в самых различных процессах, например, для автоматического вождения морских кораблей по заданному курсу.

Вследствие сложности аппаратуры, трудных условий ее работы при вибрации и тряске, а главное из-за отсутствия практической необходимости в предельно точном регулировании температуры воздуха, в установках кондиционирования воздуха вагонов изодромное регулирование не применяется.

При выборе способа регулирования необходимо учитывать начальные и эксплуатационные затраты, технологичность и надежность конструкции. Для оценки энергетической эффективности системы регулирования используют отношение холодопроизводительности компрессора при заданной степени регулирования к номинальной: =qop/qон = f(T 0). Показатели сравнительной эффективности основных способов регулирования производительности поршневых компрессоров приведены на рис. 4. Для способов пуск-остановка (линия 1) и отжатие впускных клапанов (линия 2 ) характерны малые энергетические потери и практическая независимость от режима работы. При дросселировании на всасывании (линия 3 ) наблюдается резкое падение эффективности с ростом температуры кипения хладагента, поэтому этот способ применяют в компрессорах, которые работают в узком диапазоне давлений кипения. Балансирование (линия 4 ) - наименее эффективный вариант регулирования, так как он связан с потерями энергии сжатого пара при его перепуске, повышением температуры всасывания хладагента, а следовательно, и температуры нагнетания; энергетические потери при этом способе соответствуют степени уменьшения холодопроизводительности машины.

В холодильных машинах с винтовыми компрессорами используют следующие способы регулирования холодопроизводительности: дросселирование на всасывании, балансирование, изменение частоты вращения вала, золотниковой системой.

Дросселирование обеспечивают автоматическим перекрытием дроссельного клапана, установленного на входе в компрессор. Эффективность этого способа ограничена снижением производительности до 70% от номинальной; при более глубоком дросселировании существенно снижается экономичность.

Рис. 4. Энергетическая эффективность основных способов регулирования производительности поршневых компрессоров

Балансирование осуществляют перепуском части хладагента через безопасный клапан со стороны нагнетания на всасывание.

Применение такого способа обычно ограничивают компрессорами сухого сжатия.

Наиболее экономичное регулирование путем отключения в процессе сжатия части объема рабочих полостей обеспечивает золотниковая система. Несмотря на усложнение конструкции компрессора, такая система открывает дополнительные схемные возможности усовершенствования паровых холодильных машин.

Автоматизация работы холодильной машины позволяет с высокой точностью поддерживать требуемый уровень параметров процесса охлаждения, отвечающий оптимальному технологическому режиму, а также частично или полностью исключить участие обслуживающего персонала в эксплуатации холодильного оборудования.

В паровых компрессорных машинах объектами автоматизации являются теплообменные аппараты, в частности степень заполнения испарителя жидким хладагентом и давление процесса конденсации. Объективным и технически наиболее удобным показателем, отражающим степень заполнения испарителя, служит перегрев пара

на выходе из него. Действительно, когда часть теплопередающей поверхности испарителя обеспечивает перегрев паров хладагента, уменьшение его подачи приводит к снижению степени заполнения, а следовательно, к росту перегрева. При этом повышение температуры перегрева сверх расчетного уровня ухудшает энергетические показатели машины и надежность ее работы. Подача хладагента в испаритель в количестве, превышающем возможности процесса теплопередачи, связана с переполнением испарителя и снижением перегрева. Последнее приводит к снижению холодопроизводительности машины, а в ряде случаев к работе компрессора на влажном паре, что может привести к гидравлическому удару.

Системы автоматического регулирования степени заполнения испарителя по перегреву паров хладагента выполняют плавными и позиционными (обычно двухступенчатыми). В качестве автоматического регулирования в плавных системах широко используют терморегулирующие вентили (ТРВ), в которых величину перегрева паров хладагента получают в виде разности между температурой пара, выходящего из испарителя, и температурой кипения хладагента. Терморегулирующие вентили, обеспечивающие процесс дросселирования хладагента от давления конденсации до давления испарения, устанавливают на линии между конденсатором и испарителем.

Принципиальная схема автоматического регулирования уровня хладагента в испарителе с помощью ТРВ, используемая в хладоновых машинах РПС, приведена на рис. 5. Чувствительный элемент измерительной головки 1 терморегулирующего вентиля, выполненный в виде мембраны 2 или сильфона, находится под воздействием разности давлений перегретого пара, соответствующего температуре перегрева, и хладагента на выходе из испарителя 7 , отвечающего температуре кипения. Перегретый пар, который образуется в термосистеме, состоящей из термобаллона 6 и капилляра 3 , поступает в пространство над мембраной; пространство под мембраной связывают уравнительной трубкой 4 с всасывающей линией компрессора 5 . При этом уравнительную трубку присоединяют к всасывающей линии в месте установки термобаллона. В некоторых конструкциях в термобаллон вводят твердый поглотитель и всю термосистему заполняют газом.

Перемещение штока 12 в результате деформации чувствительного элемента при изменении температуры перегрева обеспечивает открытие или закрытие запорного клапана 11 , регулирующего поступление жидкого хладагента из конденсатора в испаритель по линии 10 . С помощью регулировочного винта 8 изменяют силу затяжки пружины 9 и, следовательно, необходимую величину температуры перегрева. В процессе автоматического регулирования ТРВ должен обеспечить оптимальный уровень заполнения испарителя и устойчивость системы во всем требуемом диапазоне изменения холодопроизводительности, что особенно важно для холодильных машин рефрижераторного подвижного состава. Практически устойчивая работа системы ТРВ начинается при перегреве (3 6) К. Для расширения диапазона регулирования и повышения его устойчивости в системе может быть использовано несколько ТРВ.

Рис. 5. Схема автоматического регулирования уровня хладагента в испарителе с помощью ТРВ

Процесс автоматического регулирования давления конденсации хладагента в машинах с конденсаторами воздушного охлаждения осуществляют изменением скорости или расхода охлаждающего воздуха.

Технически его обеспечивают системой жалюзи или поворотных заслонок, использованием вентиляторов с изменяемым углом установки направляющих лопаток, применением двухскоростных электродвигателей, а также периодическим выключением вентиляторов. Изменение скорости или расхода охлаждающего воздуха приводит к изменению коэффициента теплопередачи конденсатора, а следовательно, к

изменению температуры и давления процесса конденсации.

В ряде случаев повышения температуры конденсации добиваются частичным подтоплением поверхности конденсатора жидким

хладагентом.

Приборы автоматического регулирования, помимо контроля параметров испарителя и конденсатора, поддерживают заданную температуру воздуха в охлаждаемом помещении, обеспечивают своевременное удаление инея («снеговой шубы») с поверхности испарителя, регулируют уровень масла в маслоотделителях и т.д. Работу системы регулирования сочетают с автоматической защитой, которая включает комплекс мер по безопасной эксплуатации холодильных машин и предупреждает аварийные режимы путем отключения машины.

Система автоматической защиты включает соответствующие датчики (реле защиты и устройства для преобразования импульсов от этих реле в сигнал остановки). В ряде случаев систему защиты дополняют блокировкой, которая исключает повторный пуск машины без устранения причины, вызвавшей срабатывание защиты.

В компрессорных холодильных машинах датчики системы защиты следят за уровнем максимального давления и температуры хладагента на нагнетании компрессора, минимального давления на всасывании, за давлением и температурой масла в системе смазки, за работой электродвигателя, исключающей его перегрузку или короткое замыкание. В систему, автоматической защиты может быть введена световая или звуковая сигнализация, оповещающая о достижении предельного значения контролируемой величины или приближения к опасному режиму работы машины.

3. Классификация и основные элементы

приборов автоматики

По назначению приборы автоматики можно разделить на четыре основные группы: регулирования, защиты, контроля, сигнализации.

Приборы автоматического регулирования обеспечивают включение или выключение холодильной установки и отдельных ее аппаратов, а также управляют процессами работы. В холодильных установках подвижного состава приборы регулирования осуществляют следующие функции: правильно заполняют испаритель хладагентом (терморегулирующие вентили и др.); поддерживают температуру в охлаждаемых помещениях в заданных интервалах (термостаты, дуостаты); регулируют давление в конденсаторе в заданном интервале (прессостаты); обеспечивают своевременное оттаивание инея с испарителя (прессостаты, программные реле, термостаты); открывают или прекращают подачу жидкого или парообразного хладагента (электромагнитные вентили, обратные клапаны); ограничивают поступление хладагента в компрессор из испарителя (регуляторы давления всасывания).

Приборы автоматической защиты выключают всю холодильную установку или отдельные аппараты при наступлении опасных режимов работы: при достижении предельно допустимого давления нагнетания (прессостаты); при вакууме на стороне всасывания (прессостаты); при падении давления масла в системе смазки компрессора (релеразности давлений); при низкой температуре масла в картере компрессора (термостаты) ; при высокой температуре паров хладагента, сжатых в компрессоре (реле температуры); при перегрузке электродвигателя или коротком замыкании (тепловые реле, автоматические выключатели, плавкие предохранители).

Приборы автоматического контроля осуществляют измерения, а в некоторых случаях и записи определенных параметров работы холодильной установки, например температуры в охлаждаемом помещении (термограф), расхода электроэнергии (электросчетчик), времени работы оборудования (счетчики моточасов) и др. Приборы автоматической сигнализации включают световые или звуковые сигналы при достижении заданного значения контролируемой величины или при приближении к опасному режиму работы машины.

Приборы автоматики состоят из следующих основных частей: чувствительного элемента (датчика), передающего механизма, регулирующего (рабочего) органа, устройства для настройки (задатчика). Чувствительный элемент воспринимает контролируемую величину (температуру, давление, уровень жидкости и т.п.) и преобразует ее в удобный вид энергии для дистанционной передачи. Передающий механизм соединяет чувствительный элемент с регулирующим (рабочим) органом.

Регулирующий орган действует по сигналу чувствительного элемента. В приборах двухпозиционного действия (реле) рабочий орган может занимать только два положения. Например, электрические контакты реле давления (прессостата) или реле температуры (термостата) могут быть замкнуты или разомкнуты, клапан электромагнитного вентиля - закрыт или открыт. В приборах плавного (пропорционального) действия каждому изменению регулируемой величины соответствует перемещение регулирующего органа (например, плавное перемещение клапана регулирующего вентиля при изменении тепловой нагрузки на испаритель). Устройство для настройки прибора устанавливает заданное значение регулируемой или контролируемой величины. Отклонение регулируемой величины, не вызывающее перемещение регулирующего органа, называется зоной нечувствительности, или дифференциалом прибора. Чувствительные элементы приборов давления выполняются в виде сильфонов и мембран. Сильфон представляет собой тонкостенную гофрированную трубку. Изготавливают сильфоны из латуни, бронзы, нержавеющей стали. При изменении давления в сильфоне длина его может значительно изменяться. Мембраны изготавливают в виде круглых эластичных пластин, закрепленных по периметру. Мембраны могут быть упругие (металлические) и мягкие (резиновые, пластмассовые, из прорезиненных тканей).

204 Температурные чувствительные элементы выполняют в виде биметаллических пластин и термочувствительных систем с различными наполнителями. В элементах, основанных на расширении твердых тел при нагревании, температура преобразуется в механическое перемещение (дилатометрические элементы). Перемещение происходит за счет неодинаковых коэффициентов линейного расширения у различных металлов. На рис. 3.6 а, б показаны элементы с двумя металлическими деталями 1 и 2 из разного материала, на рис. 3.6 в, г - чувствительный элемент из биметалла, т.е. из двух слоев металлов, сваренных между собой.

В элементах с тепловым расширением жидкостей используется зависимость изменения объема жидкости от температуры. Датчики, заполненные ртутью (рис. 3.7, а, б), используются для преобразования температуры в электрический сигнал без промежуточной механической системы. Датчик на рис. 3.7, а имеет релейную характеристику, на рис. 3.7, б - плавную. Применявшиеся ранее на рефрижераторных поездах ртутноконтактные датчики температуры оказались недостаточно надежными, так как из-за вибраций и толчков на ходу появлялись разрывы ртутного столба и нарушалась электрическая цепь. Кроме того, ртутно-контактные датчики рассчитаны на малую электрическую мощность сигнала.

Рис. 3.6. Дилатометрические чувствительные элементы

Рис. 3.7. Жидкостные

термочувствительные

Поделиться: