Электроэнергетика главное. Многообъемные масляные выключатели Инструкция по эксплуатации мкп 35

ОБЩИЕ СВЕДЕНИЯ О КОНСТРУКЦИИ ВЫКЛЮЧАТЕЛЕЙ ТИПА ВМ-35 и МКП-35

Масляные выключатели типа ВМ-35 изготовляются на номинальный ток 600 а с предельной отключающей мощностью 400 тыс ква. До 1941 г. выключатели выпускались в исполнении ВМ-35-Н для наружной установки и ВМ-35-Ф для установки в помещении. Выключатели ВМ 35-Ф отличаются в основном вводами для внутренней установки и меньшими расстояниями между фазами. В настоящее время завод-изготовитель выпускает выключатели типа ВМ-35 либо с электромагнитным приводом (обозначение выключателя ВМД-35), либо с ручным автоматическим приводом (обозначение выключателя ВМ-35). В случае необходимости выключатели типа iBM-35 могут сочленяться с грузовыми или пружинно-грузовыми приводами.

Масляные выключатели типа МКП-35 выпускаются на номинальные токи 600 и 1000 а с предельной мощностью отключения 1000 тыс. ква. Выключатели типа МКП-35 соединяются с электромагнитными приводами типов ШПЭ-2 или ШПС-30.

Выключатели типов ВМ-35 и МКП-35 предназначены для открытой установки, но могут также устанавливаться в помещении. Основные технические данные выключателей приведены в табл. I.

Во включенном выключателе цепь проходит с верхнего контактного наконечника ввода по токоведущему стержню на неподвижный контакт, к которому прижат подвижной контакт. По нему ток проходит на второй неподвижный контакт и далее на верхний контактный наконечник другого ввода. Подвижной контакт связан с приводным механизмом выключателя изолирующей штангой, проходящей через направляющую бакелитовую трубу.

При отключении выключателя приводной механизм под действием отключающих пружин перемещает подвижные контакты вниз, а дуга гасится одновременно в двух дугогасительных камерах. Подвижные контакты отключенного выключателя находятся в нижнем печожении недалеко от дна бака. При этом надежная изоляция обеспечивается маслом.

При включении выключателя под действием привода растягиваются отключающие пружины и одновременно поднимаются подвижные контакты, замыкающиеся с неподвижными.

Таблица 1

Электрические характеристики

ВМ-35

МКП-35

Номинальное напряжение, кв

35

35

Наибольшее рабочее напряжение, кв.

40.5

40.5

Номинальный ток, а

600

600

1 000

Предельный сквозной ток, ка:

24

действующее значение

10

a if плит уда

17,3

45

Ток термической устойчивости, ка, для

промежутка времени:

24

1 сек

10

5 сек

10

16,5

7,1

11.7

Предельная мощность отключения, тыс.

ква, при номинальном напряжении, кв:

1 000

35

4ии

25

230

570

Механические характерце гики

ВМ-35

МКП-35

Угол поворота вала приводного меха­

низма, град

85+5

72

Зазор между рычагом и упором при

включенном положении выключателя,

1,5-2

1,5-2

Зазор между штангой и направляющи­

1-1,5

1-1,5

ми, мм

Высота камеры, мм

120

-

Контрольные размеры по установке ка­

80 + 1

90± 1

мер (расстояние от оси фазы), мм . .

Ход подвижных контактов, мм. . .

270-280

То же для выключателей выпуска до

1941 г., мм

200-210

-

Ход в рабочих контактах (вжим), мм. .

12+2

16+1

То же выключателей выпуска до 1941 г.,

мм

10+2

-

Нажатие контактных пружин, к Г. . .

17

-

Разновременность замыкания контактов,

мм:

2

в фазе

2

между фазами

4

4

Переходное сопротивление контактов,

550

350

Механнческие характеристики

ВМ-35

МКП-35

Скорость отключения, м се/с:

в момент размыкания контактов. .

0.9-1.2

1.5-1.7

в момент выхода контактов из ка­меры

2.2-2,9

максимальная - . .

2.4-3.1

2.8-3.5

Скорость включения, м,"сек

В зависимости от тина

привода

Вес, кг:

выключателя (без привода), не зали­того маслом

900

1 900

масла в трех фазах

300

800

выключателя с маслом и приводом

1 300-1 350

3 100-3 400

Общий вид выключателей показан на рис. 1 и 2.

Каждая фаза выключателя смонтирована на своей крышке и имеет отдельный бак, в который залито изоляционное масло. Три фазы выключателя смонтированы на общем сварном каркасе. Крышки фаз соединяются трубами. На каркасе размещен барабан с тросом для опускания и подъема баков. На валу барабана имеется лебедка, а на ролики каждого бака накладывается трос. Размещение деталей фазы выключателя показано на рис. 3 и 4.

Рис. 1. Общий вид выключателя ВЛ1-35.

Рис. 2. Общий вид выключателя МКП-35.
1 - крышка; 2-бак. 3 - ввод; 4 - каркас; 5 - соединительная труба; 6- барабан; 7 - лебедка; 8 - шкаф с приводом.

Рис. 3. Разрез фазы выключателя ВЛ1-35.
1 - приводной механизм; 2 - маслоуказатель; 3 - направляющая труба; 4 - экран; 5 - подвижной контакт; 6 - маслоспускной вентиль; 7 - ввод; 8 - крышка; 9 - трансформатор тока; 10 - дугогасительная камера; 11 - бак; 12 - вал;
13 - подшипник вата; 14 - соединительная вилка; 15 - кожух ввода; 16- стопорное кольцо; 17 - неподвижный контакт; 18 - баковая изоляция.

Рис. 4. Разрез фазы выключателя о
МКП-35.
1 - приводной механизм; 2 - маслоуказа-1ель; 3 - направляющая труба; 1 - экран;
5 - подвижной контакт; 6 -- MafocnvcK-кой вентиль; 7-ввод, «-крышка; 9-трансформатор тока; 10 - дугогаснтельная камера; 11 - бак; 12 - каркас; 13 - нижняя часть шкафа привода;
14 - пробка, через которую ввертывается в торец штанги стержень при снятии виброграмм скорости движения штанги;

Тип выключателя

Номинальные

Габариты, мм

Тип привода

напряжение, кВ

ток отключения, кА

Многообъемные выключатели

МКП-35-1000-25

С-35-3200/20200-50Б

ШПЭ-38 или ШПВ-35

МКП-110Б-1000/ 630-20

ШПЭ-46 или ШПВ-46

У-220-1000/2000-25

ШПЭ-44Н или ШПВ-45П

ШПЭ-46 или ШПВ-46

Малообъемные выключатели

ВМТ-110Б-20/1000

ВМТ-220Б-20/1000


Тип выключателя

Номинальные данные

Размеры, полюса мм

Тип привода

Количество и тип

напряжение, кВ

ток отключения, А

трансформаторов тока

МКП-35-1000-25

12 х ТВ-35/25

12 х ТВ-35/40

МКП-110М-630-20

12 хТВ-110/40

МКП-1 10М-1000-20

12 х ТВ-110/40

12 х ТВ-110/50

ШПЭ-46; ШПЭ-46П

12 хТВУ-110/50

ШПЭ-44; ШПВ-45П

12 х ТВ-220/ 40

У-220-2000-25; У-220-2000-25хл*

12 х ТВ-220/40

ШПВ-46П; ППГ-1

12 х ТВС-220/40

Встроенный пневматический

ВМК-110 ВМК-220

* Выключатель в исполнении для холодных районов (хл)

Выключатель

Номинальное напржение, кВ

Номинальный ток, А

Ход подвижных частей, мм

Вжим (ход) контактов, мм

Равномерность замыкания и размыкания контактов, мм

600, 1000,1500, 5000

600, 1000, 1500, 5000

/откл,
кА

Электродинами

Размеры, м

Масса, кг

Тип привода

ческая стойкость (амплитуда), кА

отключения

включения

паузы АПВ

Маломасляные (внутренняя установка)

Встроенный пружинный

Встроенный электромагнитный

Встроенный пружинный

0.09 0.11 0.12 0,14

ПЭ-11, ПП-67

2,0; 3,15; 4,0; 5,0

(наружная установка)

ШПЭ-12. ПП-67

ШПЭ-38, ШПВ-35

ШПЭ46, ШПВ-46

ШПЭ-44П, ШПВ-45П

ШПЭ-46, ШПВ-46

Примечания: 1 В таблице приведено сокращенное обозначение типа выключателя, без указания 1тк. Буквенная часть обозначения: В - выключатель, К - колонковый (для малообъемных) или камерный (для баковых), Э - с встроенным электромагнитным приводом, М - масляный, Г - генераторный или горшковый, П - подвесного исполнения (для малообъемных) или подстанционный (для баковых), У - усиленный; одной буквой обозначены серии: С - «Свердловск», У - «Урал». Цифровая часть - номинальное напряжение, кВ, и отключаемый ток, кА. Буква Б после цифрового обозначения номинального напряжения указывает на исполнение с усиленной изоляцией
Ток термической стойкости численно равен /откл (кроме ВГМ-20 с /, = 105 кА); наибольшее допустимое время протекания тока к.з. для ВКЭ-10, МГУ-20 и для всех выключателей 110-220 кВ - 3 с, для ВМПЭ-10-20 - 8 с, для остальных - 4 с.
Размер L определен вдоль оси полюса (фазы), размер В - поперек. В числителе приведены значения L и Н при нормальной изоляции, в знаменателе - при усиленной (группа Б).
В числителе - собственное время отключения выключателя, в знаменателе - полное
Общая масса определена с приводом без масла.
Для /дин и времени включения у выключателей с разными вариантами приводов в числителе - значения при электромагнитном приводе, в знаменателе - при пневматическом (для С-35М - при пружинном).
Для выключателя ВПМ-10 указано время отключения с приводом ПЭ-11, для С-35М - с приводом ШПЭ-12; при приводе ПП-67 время отключения соответственно 0,12/0,14 и 0,05/0,12.
МГУ-20 на ток 9,5 кА может быть использован только с искусственным дутьевым охлаждением.

Энергетическая отрасль имеет на своих руках очень большую проблему: профессионалы, родившиеся в период с середины 1940-х и до середины 1960-х годов, приближаются к пенсионному возрасту. И встает очень большой вопрос: кто их заменит?

Преодолевая барьеры применения энергии из возобновляемых источников

Несмотря на определенные достижения в последние годы, энергия из возобновляемых источников составляет весьма скромную часть современных услуг по предоставления энергии по всему миру. Почему это так?

Мониторинг передачи электроэнергии в реальном времени

Спрос на электроэнергию продолжает расти и перед компаниями, передающими электроэнергию, возникает задача роста пропускных мощностей их сетей. Решить ее можно строительством новых и модернизацией старых линий. Но есть еще один способ решения, он заключается в применении датчиков и технологии мониторинга сети.

Материал, способный сделать солнечную энергию «удивительно дешевой»

Солнечные батареи, изготовленные из давно известного и более дешевого, чем кремний материала, могут генерировать такое же количество электрической энергии, как и используемые сегодня солнечные панели.

Сравнение элегазовых и вакуумных выключателей для среднего напряжения

Опыт разработки выключателей среднего напряжения, как элегазовых, так и вакуумных, создали достаточное свидетельство того, что ни одна их этих двух технологий, в общем, значительно не превосходит другую. Принятие решения в пользу той или другой технологии стимулируют экономические факторы, предпочтения пользователей, национальные "традиции", компетенция и специальные требования.

КРУ среднего напряжения и LSС

Коммутационное оборудование среднего напряжения в металлическом корпусе и категории потери эксплуатационной готовности (LSС) - категории, классификация, примеры.

Какие факторы повлияют на будущее производителей трансформаторов?

Независимо от того, производите ли вы или продаете электроэнергию, или осуществляете поставки силовых трансформаторов за пределы страны, вы вынуждены бороться с конкуренцией на глобальном рынке. Существует три основных категории факторов, которые окажут влияние на будущее всех производителей трансформаторов.

Будущее коммутационного оборудования среднего напряжения

Умные сети стремятся оптимизировать связи между спросом и предложением электроэнергии. При интеграции большего количества распределенных и возобновляемых источников энергии в одну сеть. Готово ли коммутационное оборудование среднего напряжения к решению этих задач, или необходимо его развивать дальше?

В поисках замены элегазу

Элегаз, обладает рядом полезных характеристик, применяется в различных отраслях, в частности, активно используется в секторе электричества высокого напряжения. Однако элегаз обладает и значительным недостатком - это мощный парниковый газ. Он входит в список шести газов, включенных в Киотский протокол.

Преимущества и типы КРУЭ

Электрическую подстанцию желательно размещать в центре нагрузки. Однако, часто, основным препятствием такого размещения подстанции является требуемое для нее пространство. Эта проблема может быть решена за счет применения технологии КРУЭ.

Вакуум в качестве среды гашения дуги

В настоящее время в средних напряжениях технология гашения дуги в вакууме доминирует по отношению к технологиям, использующим воздух, элегаз, или масло. Обычно, вакуумные выключатели более безопасны, и более надежны в ситуациях, когда число нормальных операций и операций, обслуживающих короткие замыкания, очень велико.

Выбор компании и планирование тепловизионного обследования

Если для вас идея тепловизионного обследования электрического оборудования является новой, то планирование, поиски исполнителя, и определение преимуществ, которые может дать эта технология, вызывают растерянность.

Наиболее известные способы изолирования высокого напряжения

Приводены семь наиболее распространенных и известных материалов, применяемых в качестве высоковольтной изоляции в электрических конструкциях. Для них указываются аспекты, требующие специального внимания.

Пять технологий увеличения эффективности систем передачи и распределения электроэнергии

Если обратить внимание на меры, обладающие наивысшим потенциалом в улучшении энергоэффективности, то на первое место неизбежно выходит передача электроэнергии.

В Голландию приходят самовосстанавливающиеся сети

Рост экономики и увеличение численности населения приводят к увеличению спроса на электроэнергию, вместе c жесткими ограничениями на качество и надежность поставок энергии, растут усилия на обеспечение целостности сети. В случае отказа сетей, перед их владельцами стоит задача минимизировать последствия этих отказов, снижая время выхода из строя, и количество отключенных от сети потребителей.

Оборудование высоковольтных выключателей для каждой компании связано со значительными инвестициями. Когда встает вопрос об их обслуживании или замене, то необходимо рассматривать все возможные варианты.

Пути разработки безопасных, надежных и эффективных промышленных подстанций

Рассмотрены основные факторы, которые следует учитывать при разработке электрических подстанций для питания промышленных потребителей. Обращено внимание на некоторые инновационные технологии, которые могут улучшить надежность и эффективность подстанций.

Для проведения сравнения применения вакуумных выключателей или контакторов с плавкими предохранителями в распределительных сетях напряжения 6... 20 кВ, необходимо понимание основных характеристик каждой из этой технологии выключения.

Генераторные выключатели переменного тока

Играя важную роль в защите электростанций, генераторные выключатели дают возможность более гибкой эксплуатации и позволяют находить эффективные решения для сокращения инвестиционных затрат.

Взгляд сквозь коммутационное оборудование

Рентгенографическая инспекция может помочь сэкономить время и деньги за счет снижения объема работы. Кроме того снижается и время срывов поставок и простоев оборудования у клиента.

Тепловизионная инспекция электрических подстанций

Элегаз в электроэнергетике и его альтернативы

В последние годы вопросы охраны окружающей среды приобрели очень большой вес в обществе. Эмиссия элегаза из коммутационного оборудования является серьезной составляющей изменений климата.

Гибридный выключатель

Высоковольтные выключатели относятся к важному электроэнергетическому оборудованию, используемому в сетях передачи электроэнергии для изолирования сбойного участка от работоспособной части электрической сети. Тем самым обеспечивается безопасная работа электрической системы. В настоящей статье анализируются достоинства и недостатки этих двух типов выключателей, и необходимость в гибридной модели.

Безопасность и экологичность изоляции распределительного оборудования

Целью настоящей статьи является освещение потенциальных опасностей для персонала и окружающей среды, связанных с тем же самым оборудованием, но не находящимся под напряжением. Статья концентрируется на коммутационном и распределительном оборудовании на напряжения свыше 1000 В.

Функции и конструкция выключателей среднего и высокого напряжения

Преимущества постоянного тока в высоковольтных линиях

Несмотря на большее распространение переменного тока при передаче электрической энергии, в ряде случаев использование постоянного тока высокого напряжения предпочтительнее.

Многообъемные (баковые) масляные выключатели первоначально до середины 30-х годов были единственным видом отключающих аппаратов в сетях высокого напряжения.
В выключателях этого вида на каждую фазу предусмотрен отдельный стальной заземленный бак, заполненный трансформаторным маслом, которое используется в качестве газогенерирующего вещества при гашении электрической дуги в процессе отключения, а также для изоляции контактной системы от заземленного бака. Выключатели используются в электроустановках напряжением 35, 110 и 220 кВ.
Выключатель МКП-35 (масляный, камерный, подстанционный, на напряжение 35 кВ показан на рис. 1. Он состоит из трех баков 1 овальной формы (рис. 1, а), закрепленных на сварной раме 2. Управление выключателем осуществляется с помощью привода в шкафу 3. Для опускания и подъема баков используется лебедка 4.


Рис. 1:
а - выключатель типа МКП-35; б - разрез полюса выключателя На рис. 1, б приведен разрез одного полюса выключателя, на котором показаны: бак 3 и дугогасительная камера 1, имеющие изолирующие экраны 2. На крышке бака расположены высоковольтные вводы 5. Подвижные контакты 7 закреплены на траверсе которая штангой б связана с приводным механизмом в верхней части бака.

На токоведущем стержне каждого ввода крепится дугогасительная камера (рис. 2) с помощью двух болтов держателя 4. Камера закрыта изоляционным экраном 1. Верхняя часть камеры - металлическая (сталь, латунь), нижняя - собирается из изолирующих пластин 9, имеющих специальные профильные вырезы. В собранном виде пластины стягиваются текстолитовыми шпильками и образуют Камеру, имеющую центральный вертикальный канал с горловиной 8. для прохода подвижного контакта и два горизонтальных канала поперечного дуться с выходом в масляный бак.


а - дугогасительная камера выключателя MKП-35; б - процесс гашения дуги в камере
Контакты выключателя торцевого типа. Их замыкание происходит в верхней части камер, имеющей металлический корпус 6, в котором находится неподвижный контакт 7. Пружина 3 служит для смягчения ударов, предупреждения вибраций при включении и создания контактного нажатия во включенном положении. Гибкая связь 2 обеспечивает хороший контакт между подвижной и неподвижной частью верхней контактной системы (неподвижного контакта). В правой верхней части камеры имеется отсек 5, в котором при заполнении бака маслом остается воздух, образующий буферную газовую подушку. ,
При размыкании контактов 3 и 4 (рис. 2, б) в верхней части камеры возникает дуга, которая растягивается вслед за подвижным контактом 4, разлагает и испаряет масло. Давление в основной камере резко повышается, так как выход из камеры перекрыт стержнем подвижного контакта. Давление передается в отсек 2, где происходит сжатие воздуха газовой подушки.
Подвижный контакт по мере движения вниз поочередно открывает горизонтальные каналы 6 поперечного дутья, в которые под большим давлением устремляются масло и газы их верхней части камеры. При этом дуга зигзагообразно растягивается в каналах, интенсивно деионизируется и гаснет.
Гашение происходит в двух дугогасительных камерах одновременно (рис. 1, б), то есть на каждую фазу создается два разрыва электрической дуги, благодаря чему процесс отключения значительно ускоряется (tотклв = 0,08 с). Выключатель МКП-35 относится к числу быстродействующих. Интенсивная деионизация дуги и ее быстрое гашение происходят благодаря следующим факторам:
наличие водорода в газовом пузыре, возникающем при разложении масла;
высокое давление в газовом пузыре;
растяжение дуги в продольном и поперечном направлениях;
два разрыва токовой цепи на одну фазу;
прохождение переменного тока через нуль.

Рис. 3:
а - разрез полюса выключателя типа С-35; б - разрез его дугогасительной камеры
Важнейшую роль в работе выключателя играет буферное пространство, расположенное в верхней части бака над маслом и заполненное воздухом. Оно позволяет маслу расширяться вверх, из-за чего уменьшается давление на стенки и дно бака. Если это пространство недостаточно (высокий уровень масла), то возможен взрыв бака.
При низком уровне масла в баке водород, входящий в состав выделяющихся газов и имеющий высокую температуру, поднимаясь вверх, не успевает охладиться, и соединяясь с кислородом воздуха в буферном пространстве, может вызвать взрыв. Следовательно, взрыв выключателя может произойти как при повышении, так и при понижении уровня масла. В процессе эксплуатации ведется контроль за уровнем масла, для этой цели баки имеют маслоуказатели.
Выключатель С-35 на 35 кВ был разработан в городе Свердловске (Екатеринбурге). Он выпускается на номинальный ток 630 А и используется в сетях, где не требуется мощный выключатель МКП-35. Их основной отличительной особенностью являются дугогасительные камеры и процессы гашения дуги в них.
Выключатель состоит из трех баков, разрез одного из них представлен на рис. 3, а. Бак 14 имеет форму эллиптического конуса выполнен из листовой стали, внутри обшит изоляцией 11 из электрокартона и снабжен маслоспускным краном 13. Бак крепится с помощью четырех стяжных шпилек 17 к стальной крышке 1, на которой расположены два ввода. Основной частью ввода является токоведущий стержень 15, пропущенный через бакелитовую втулку 5. Наконечник 2 с резьбой служит для присоединения внешних токоведущих частей. Для повышения влагостойкости пространство между бакелитовой втулкой 5 и фарфоровой покрышкой б заполняется морозостойкой мастикой 4. Сверху ввод закрыт круглой литой крышкой 3. На вводах установлены трансформаторы ток 7. Снизу к токоведущим стержням 15 крепятся медные неподвижные контакты 9 Г-образной формы. Подвижная дугогасительная камера 10 закреплена на изолирующей тяге 16, перемещающейся внутри направляющей втулки 8, под действием приводного механизм 18. Под дном бака размещено нагревательное устройство 12, которое включается для подогрева масла при температуре окружающего воздуха ниже -20°С.
Разрез дугогасительной камеры показан на рис. 29, б. Корпус 5 собирается из двух частей, изготовленных из легкого синтетического материала, выдерживающего высокое давление, путем соединения стяжными болтами 10. Внутренняя полость камеры облицована дугостойким изоляционным материалом 7. В выхлопные отверстия, расположенные в верхней части и с боков камеры установлены втулки 4 и б из дугостойкого материала. В камере размещается подвижный контактный мост 8 с металлокерамическими напайками 12, опирающийся на четыре контактные пружины 9.
Пружины обеспечивают необходимое усилие в контактном соединений между неподвижными контактами 14, облицованными металлическими пластинами 13, и подвижным контактом 8. Ход подвижного контакта 8 ограничивается двумя парами выступов. Корпус 3 камеры воздушной подушки соединяется с изолирующей штангой 1 с помощью резьбового соединения и фиксируется гайкой 2.
При отключении приводной механизм перемещает штангу 1 вместе с камерой вниз, между подвижным и неподвижным контактами образуются две дуги, разлагающие масло на газы. Давление в камере резко повышается и дуги выдуваются в выхлопные отверстия, этому способствует сжатый в камере воздушной подушки воздух, который служит в первый момент газообразования амортизатором, запасающим энергию. По мере продвижения камеры с подвижным контактным мостом вниз дуги растягиваются как в поперечном, так и в продольном направлении. Соприкасаясь с холодными слоями масла дуги охлаждаются, деионизируются и гаснут окончательно при очередном переходе тока через нуль.
В выключателе необходимо поддерживать уровень масла во избежание взрыва как и в МКП-35. Выключатель С-35 относится к быстродействующим.
В выключателе МКП-110М на напряжение 110 кВ установлены дугогасительные камеры поперечного масляного дутья с многократным разрывом дуги. На рис. 4, а схематично представлен разрез дугогасительных камер в процессе отключения выключателя. Процесс идет по двухступенчатому циклу: сначала размыкаются контакты внутри камеры и в ней размыкается цепь тока; ток, протекающий через шунтирующие резисторы 7 сопротивлением 750-1000 Ом, резко снижается; потом цепь размыкается за пределами дугогасительных камер и две маломощные дуги легко гасятся в масляной среде бака выключателя.
Внутри камеры заключенной в толстостенный бакелитовый цилиндр 1, по оси проходит изолирующая штанга 4 с подвижными контактными мостиками 3, эластично закрепленных с помощью пружин. На внутренней боковой поверхности цилиндра установлены неподвижные контакты 2, располагаемые попарно друг против друга. При помощи внешних подвижных контактов, расположенных на траверсе 5 при включении штанги 4 с контактными мостиками 3 перемещаются вверх, преодолевая сопротивление пружин, и замыкают цепь.

Рис. 4:
а -г- принцип гашения дуги в выключателе типа МКП-110М; б - разрез его фазы
При отключении выключателя на каждом контактном мостике образуется две дуги: вначале - гасимая, против выхлопного отверстия в стенке цилиндра, частично прикрытого фибровыми накладками; потом газогенерирующая (примерно, через четверть периода) генерирующие дуги разлагают масло в камере, генерируют газы, поддерживающие в камере высокое давление и поперечное газомасляное дутье через выхлопное отверстие 6. Таким образом, в двух камерах создается восемь разрывов токовой цепи на одну фазу, что способствует гашению возникающих дуг.
Шунтирующие резисторы 7, заключенные в отдельные бакелитовые цилиндры с отверстиями для циркуляции масла и охлаждения нихромовых спиралей, намотанных на бакелитовые цилиндры внутри цилиндров с отверстиями. Эти резисторы обеспечивают равномерное распределение напряжения между двумя дугогасительными камерами, снижение скорости восстановления напряжения и уменьшения напряжения, появляющегося на контактах выключателя после отключения, уменьшения мощности дуг при окончательном разрыве цепи. С другой стороны, применение шунтирующих резисторов и удорожает конструкцию выключателя, а также несколько увеличивает время полного отключения цепи, так как после погасания дуг в камерах через шунтирующие резисторы протекает небольшой сопровождающий ток, отключаемый контактами траверсы 5. Длительность горения дуги с сопровождающим током составляет от 0,06 до 0,08 с.
Разрез одной фазы выключателя МКП-110М дан на рис. 4, б. выключатель имеет три цилиндрических бака 1, устанавливаемых на фундаменте. На крышках баков устанавливаются маслонаполненные вводы 3, к стержням которых крепятся дугогасительные камеры 4. Параллельно дугогасительным камерам присоединяются шунтирующие резисторы в бакелитовых цилиндрах. Траверса 7 с подвижными контактами закреплена на штанге 5, перемещающейся при включении и отключении в направляющем устройстве 6 под действием механизма включения и отключения 2, с которым связаны блокировочные контакты 9. Внутренняя поверхность бака изолирована двумя слоями электротехнической фанеры 10. Масло- спускной кран 12 служит для спуска отработанного масла и подачи по маслопроводу свежего. Устройство для подогрева масла 14 используется в зимнее время при температуре окружающего воздуха ниже -20°С.В нижней части бака находится лаз 13, используемый для проникновения в бак ремонтного персонала для внутреннего осмотра и ремонта выключателя. Встроенные трансформаторы тока 8 устанавливаются на вводах 3, токоведущие стержни которых являются первичными обмотками для трансформаторов тока.
Выключатель У-110 на 110 кВ был разработан заводом Уралэлектротяжмаш. Внешний вид, габаритные размеры, принцип работы во многом аналогичен выключателю МКП-110М, однако, применение новых материалов и некоторых конструктивных разработок позволило повысить рабочие токи и отключаемые мощности выключателя, снизить удельный расход материалов на единицу отключаемой мощности.
На рис. 5, а показан разрез фазы выключателя. В каждой из двух дугогасительных камер 3 имеется по две пары последовательно соединенных контактов, между которыми при отключении возникает две дуги. Первая пара контактов образована верхним неподвижным контактом 15 и подвижным 17 (рис. 5, б), вторая - промежуточным контактом 24 и подвижным 22. Между контактами 24 и 17 существует электрическая связь в форме скользящего контакта. Механически оба подвижных контакта 17 и 22 соединены с внешним контактом 21 дугогасительной камеры, причем контакт 17 изолирован от контактов 21 и 22 втулкой 18.
При отключенном выключателе контакты внутри камеры разомкнуты: контакт 21 и связанные с ним механически контакты 17 и 22 отведены вниз пружиной поджатия 20. Траверса 2 опущена вниз, так что между ее подвижным контактом 27 и внешним подвижным контактом камеры 21 образован еще один, внешний, разрыв.


Рис. 5:
а - разрез фазы выключателя типа У-110; б - разрез его дугогасительной камеры
При включении выключателя траверса 2 под действием приводного механизма 9, который перемещает штангу подвижной
системы в направляющем устройстве 5, поднимается вверх, ее контакт 27 вначале соприкасается с контактом 21 и образует при этом цепь тока через резисторы 4, шунтирующие дугогасительные камеры, затем перемещает контакт 21 и контакты 22 и 17, синхронно замыкая цепь тока через контактные пары 15-17 и 22-24.
При отключении выключателя траверса 2 под действием отключающей пружины выключателя опускается вниз. На первом этапе вместе с ней опускается контакт 21, прижимаемый к контакту 27 пружиной поджатая 20, обе пары контактов 15-17 и 22-24 размыкаются. В образовавшихся разрывах токовой цепи образуется по две дуги в каждой камере. Масло в камерах под действием высокой температуры дуг активно разлагается и давление быстро растет. Дутьевая щель 25 гасительной решетки 23 открывается при опускании контакта 22, создается поперечное газомасляное дутье дуги. Дуга гаснет при первом же переходе тока через нуль. Вторая щель 26 используется для гашения дуги при отключении небольших токов КЗ или рабочих токов. Аналогичный процесс происходит в решетке 16. Образовавшиеся в процессе гашения дуг газы выбрасываются в бак 1 через сопло 11. Экран 19 ограничивает движение вниз подвижного контакта 21. После прекращения движения контакта подвижная траверса 2 продолжает движение вниз и образуются две дуги вне дугогасительных камер между контактами 21 и 27. Ток в этих дугах невелик, так как в цепь включены шунтирующие резисторы 4, поэтому гашение дуг происходит достаточно быстро.
Дугогасительная камера имеет цилиндрический корпус 14 из толстостенного бакелита. Крепится она держателем 12 к токоведущему стержню маслонаполненного ввода 14, уровень масла в котором контролируется маслоуказателем 8. На вводах установлены трансформаторы тока 7 на съемных подставках, позволяющих заменять их без объема вводов. Внутрибаковая изоляция 6 препятствует перебросу дуги на заземленный бак 1 в момент отключения выключателя. Для подогрева масла в зимнее время на каждом баке выключателя предусмотрено нагревательное устройство 12.
Основные достоинства многообъемных масляных выключателей: простота конструкции; высокая отключающая способность; возможность применения встроенных трансформаторов тока; наружная установка, позволяющая обходиться без специальных помещений.
Основные недостатки выключателей: большая масса трансформаторного масла (230 кг - С-35; 800 кг - МКП-35; 8500 кг -
МКП-110; 27000 кг - У-220), отсюда, необходимость иметь большой, запас его для замены; взрыво- и пожароопасность (справедливости ради следует отметить, что в последних разработках выключателей этот недостаток был практически исключен); большая масса и габариты затрудняют перевозку и монтаж выключателей.

Поделиться: