Нахождение стороны через радиус окружности. Как определить радиус окружности, зная ее длину

Зачастую, когда школьник сдает выпускные экзамены в школе либо вступительные в какой-либо ВУЗ, ему необходимы определенные знания в области геометрии. Причем, задания бывают не такие уж сложные, просто нужно помнить базовые формулы, чтобы применить их в решении. Задачи, в которых необходимо найти радиус окружности, не являются исключением. В принципе, они достаточно просты в решении. В данной статье мы расскажем вам, как найти радиус окружности разными способами.

Находим радиус окружности, исходя из формул

Когда вы получаете задание на контрольной или на экзамене, в котором надо найти радиус окружности, в первую очередь необходимо проанализировать имеющиеся данные. Потому что именно от них будет зависеть ход решения в целом. Так, например, найти рассматриваемую величину можно, используя такие параметры: длину окружности, ее площадь, диаметр и др. Мы рассмотрим самые простые и часто встречающиеся способы решения задач, в которых радиус окружности является неизвестным.

Все мы знаем, что радиусом окружности является длина от ее центра до какой-либо точки,которая расположена на самой окружности. В связи с этим, решения могут быть следующими:

  1. Когда вам в исходных данных задачи дан диаметр окружности, то решение здесь будет проще простого. Ведь нам известно, что диаметром является отрезок, который соединяет несколько точек на окружности, проходя при этом через ее центр. Из этого следует, что диаметр – это 2 радиуса. Тогда радиус мы находим по формуле: r=D/2, где r – это радиус окружности, а D, соответственно, ее диаметр. Например, диаметр по условию равен 32 см, тогда радиус мы вычисляем так: 32/2=16 см.
  2. Переходим к следующему способу решения. Допустим, вам в условии дана длина окружности. Выражаясь математическим языком, это так называемый периметр. Мы прекрасно знаем, что есть специальная формула нахождения длины окружности: P=2πr. Отсюда, мы можем вывести формулу радиуса: r=P/2π. Теперь рассмотрим это на примере. Допустим, по условию задачи вам дана длина окружности, равная 31,4 см, а π в математике – величина постоянная и всегда равна 3,14; тогда радиус находим следующим образом: 31,4/2*3,14=5 см.
  3. Теперь рассмотрим, как найти радиус окружности, если дана ее площадь. Формула площади окружности имеет такой вид: S=πr2. Отсюда находим формулу радиуса: r=√(S/π). Опять же рассмотрим все в цифровом исчислении. Пусть вам дана в условии задачи площадь, к примеру – 28,26 см2. Подставляем данные в выведенную нами формулу и получаем: √28,26/3,14=3 см.

Теперь вам не составит труда решить любую задачу с нахождением радиуса окружности. Главное – четко проанализировать исходные данные, а потом применить подходящую формулу, и можете считать себя великим математиком.

Радиус круга – это расстояние от центра круга до любой точки, которая лежит на внешней окружности круга. Простейший способ найти радиус – разделить диаметр пополам. Если диаметр не известен, но даны значения других величин, таких как длина окружности (C = 2 π (r)

1 По длине окружности

  1. 1 Запишите формулу для вычисления длины окружности. Формула: C = 2 π (r)
    • Число π 2 Для этого разделите обе части формулы на 2 π 3 В формулу подставьте значение длины окружности. Оно должно быть дано в задаче. Значение длины окружности подставляется вместо переменной C 4 Округлите результат. Рассчитайте величину радиуса, используя клавишу π ответ. Если у вас нет калькулятора или на нем нет такой клавиши, рассчитайте вручную, приняв π

      2 По площади круга

      1. 1 Запишите формулу для вычисления площади круга. Формула: A = π (r 2)
      2. 2 В формуле изолируйте радиус.
        • Сначала разделите обе части формулы на π 3 В формулу подставьте значение площади. Оно должно быть дано в задаче. Значение площади подставляется вместо переменной S 4 Разделите площадь на π 5 Извлеките квадратный корень. Для этого понадобится калькулятор, потому что в результате получится десятичная дробь. Так вы вычислите радиус круга.
          • Например, r = 6 , 69 = 2 , 59

            3 По диаметру

            1. 1 Найдите диаметр круга. Как правило, диаметр дан в задаче; в противном случае просто измерьте его. Диаметр – это отрезок, который соединяет две точки, лежащие на окружности, и проходит через центр окружности (круга). Диаметр делит круг на две равные части.
              • Например, дан круг диаметром 4 см.
            2. 2 Разделите диаметр на 2. Радиус круга равен половине его диаметра.
              • Например, если диаметр равен 4 см, то: r = 4 2 = 2

                4 По площади сектора и центральному углу

                1. 1 Запишите формулу для вычисления площади сектора. Формула: A = θ 360 (π) (r 2)
                2. 2 В формулу подставьте значения площади сектора и центрального угла. Эти значения должны быть даны в задаче. Убедитесь, что известна площадь сектора, а не площадь круга. Значение площади сектора подставляется вместо переменной A 3 Разделите центральный угол на 360. Так вы определите, какую часть круга занимает сектор.
                  • Например, 120 360 = 0 , 3333 4 Изолируйте (π) (r 2) 5 Разделите обе части формулы на π 6 Извлеките квадратный корень из обеих частей формулы. Так вы найдете радиус круга.
                    • Например:
                      47 , 7465 = r 2 {displaystyle 47,7465=r^{2}}

                      47 , 7465 = r 2 {displaystyle {sqrt {47,7465}}={sqrt {r^{2}}}}

                      6 , 91 = r {displaystyle 6,91=r}

                      Таким образом, радиус круга приблизительно равен 6,91 см.

Класса учащиеся общеобразовательных школ в курсе изучают круг и окружность как геометрическую фигуру, и все, что с этой фигурой связано. Ребята знакомятся с такими понятиями, как радиус и диаметр, длина окружности или периметр , площадь круга. Именно на этой теме они узнают про загадочное число Пи – это лудольфово число, как оно называлось раньше. Число Пи иррационально, так как его представление в виде десятичной дроби бесконечно. На практике используется его усеченный вариант из трех цифр: 3.14. Эта константа выражает отношение длины любой окружности к ее диаметру.
Шестиклассники решают задачи, выводя по одной данности и числа «Пи» остальные характеристики окружности и круга. В тетрадях и на классной доске они в масштабе вычерчивают абстрактные сферы и производят мало что говорящие вычисления.

А на практике

На практике такая задача может возникнуть в ситуации, когда, например, возникает необходимость проложить трассу определенной протяженности для проведения каких-либо состязаний со стартом и финишем в одном месте. Высчитав радиус, вы сможете на плане выбрать прохождение этой трассы, с циркулем в руке рассматривая варианты с учетом географических особенностей региона. Перемещая ножку циркуля – равноудаленного центра от будущей трассы, можно уже на этом этапе предусмотреть, где на участках будут подъемы, где спуски, учитывая естественные перепады рельефа. Также сразу можно определиться и с участками, где лучше разместить трибуны для болельщиков.

Радиус из окружности

Итак, предположим, что вам для проведения соревнований по автокроссу необходима круговая трасса длиной 10 000 м. Вот нужная формула для определения радиуса (R) окружности при известной её длине (C):
R=C/2п (п – число, равное 3.14).
Подставив имеющиеся значения, вы легко получаете результат:
R = 10 000:3.14 = 3 184. 71 (м) или 3 км 184 м и 71 см.

От радиуса к площади

Зная радиус окружности, легко можно определить площадь, которая будет изъята из ландшафта. Формула площади круга (S): S=пR2
При R = 3 184. 71 м она составит: S = 3.14 х 3 184. 71 х 3 184. 71 = 31 847 063 (кв. м) или почти 32 квадратных километров.

Подобные вычисления могут быть полезными при огораживании. Например, у вас имеется материал на ограду на столько-то . Взяв эту величину за периметр круга, вы легко определите его диаметр (радиус) и площадь, а, следовательно, зримо представите величину будущего огороженного участка.

– это плоская фигура, которая представляет собой множество точек равноудаленных от центра. Все они находятся на одинаковом расстоянии и образуют собой окружность.

Отрезок, который соединяет центр круга с точками его окружности, называется радиусом . В каждой окружности все радиусы равны между собой. Прямая, соединяющая две точки на окружности и проходящая через центр называется диаметром . Формула площади круга рассчитывается с помощью математической константы – числа π..

Это интересно : Число π. представляет собой соотношение длины окружности к длине ее диаметра и является постоянной величиной. Значение π = 3,1415926 получило применение после работ Л. Эйлера в 1737 г.

Площадь окружности можно вычислить через константу π. и радиус окружности. Формула площади круга через радиус выглядит так:

Рассмотрим пример расчета площади круга через радиус. Пусть дана окружность с радиусом R = 4 см. Найдем площадь фигуры.

Площадь нашей окружности будет равна 50,24 кв. см.

Существует формула площади круга через диаметр . Она также широко применяется для вычисления необходимых параметров. Данные формулы можно использовать для нахождения .

Рассмотрим пример расчета площади круга через диаметр, зная его радиус. Пусть дана окружность с радиусом R = 4 см. Для начала найдем диаметр, который, как известно, в два раза больше радиуса.


Теперь используем данные для примера расчета площади круга по приведенной выше формуле:

Как видим, в результате получаем тот же ответ, что и при первых расчетах.

Знания стандартных формул расчета площади круга помогут в дальнейшем легко определять площадь секторов и легко находить недостающие величины.

Мы уже знаем, что формула площади круга рассчитывается через произведение постоянной величины π на квадрат радиуса окружности. Радиус можно выразить через длину окружности и подставить выражение в формулу площади круга через длину окружности:
Теперь подставим это равенство в формулу расчета площади круга и получим формулу нахождения площади круга, через длину окружности

Рассмотрим пример расчета площади круга через длину окружности. Пусть дана окружность с длиной l = 8 см. Подставим значение в выведенную формулу:

Итого площадь круга будет равна 5 кв. см.

Площадь круга описанного вокруг квадрата


Очень легко можно найти площадь круга описанного вокруг квадрата.

Для этого потребуется только сторона квадрата и знание простых формул. Диагональ квадрата будет равна диагонали описанной окружности. Зная сторону a ее можно найти по теореме Пифагора: отсюда .
После того, как найдем диагональ – мы сможем рассчитать радиус: .
И после подставим все в основную формулу площади круга описанного вокруг квадрата:

Окружностью называется ряд равноудалённых точек от одной точки, которая, в свою очередь, является центром этой окружности. Окружность имеет также свой радиус, равный расстоянию этих точек от центра.

Отношение длины, какой либо окружности к её диаметру, для всех окружностей одинаково. Это отношение есть число, являющееся математической константой, которое обозначается греческой буквой π .

Определение длины окружности

Произвести расчёт окружности можно по следующей формуле:

L = π D = 2 π r

r - радиус окружности

D - диаметр окружности

L - длина окружности

π - 3.14

Задача:

Вычислить длину окружности , имеющей радиус 10 сантиметров.

Решение:

Формула для вычисления дины окружности имеет вид:

L = π D = 2 π r

где L – длина окружности, π – 3,14 , r – радиус окружности, D – диаметр окружности.

Таким образом, длина окружности, имеющей радиус 10 сантиметров равна:

L = 2 × 3,14 × 10 = 62,8 сантиметра

Окружность представляет собой геометрическую фигуру, являющуюся совокупностью всех точек на плоскости, удаленных от заданной точки, которая называется ее центром, на некоторое расстояние, не равное нулю и именуемое радиусом. Определять ее длину с различной степенью точности ученые умели уже в глубокой древности: историки науки считают, что первая формула для вычисления длины окружности была составлена примерно в 1900 году до нашей эры в древнем Вавилоне.

С такими геометрическими фигурами, как окружности, мы сталкиваемся ежедневно и повсеместно. Именно ее форму имеет внешняя поверхность колес, которыми оснащаются различные транспортные средства. Эта деталь, несмотря на свою внешнюю простоту и незатейливость, считаются одним из величайших изобретений человечества, причем интересно, что аборигены Австралии и американские индейцы вплоть до прихода европейцев совершенно не имели понятия о том, что это такое.

По всей вероятности, самые первые колеса представляли собой отрезки бревен, которые насаживались на ось. Постепенно конструкция колеса совершенствовалась, их конструкция становилась все более и более сложной, а для их изготовления требовалось использовать массу различных инструментов. Сначала появились колеса, состоящие из деревянного обода и спиц, а затем, для того, чтобы уменьшить износ их внешней поверхности, ее стали обивать металлическими полосами. Для того чтобы определить длины этих элементов, и требуется использовать формулу расчета длины окружности (хотя на практике, вероятнее всего, мастера это делали «на глаз» или просто опоясывая колесо полосой и отрезая требуемый ее участок).

Следует заметить, что колесо используется отнюдь не только в транспортных средствах. Например, его форму имеет гончарный круг, а также элементы шестеренок зубчатых передач, широко применяемых в технике. Издавна колеса использовались в конструкциях водяных мельниц (самые древние из известных ученым сооружений такого рода строились в Месопотамии), а также прялок, применявшихся для изготовления нитей из шерсти животных и растительных волокон.

Окружности нередко можно встретить и в строительстве. Их форму имеют достаточно широко распространенные круглые окна, очень характерные для романского архитектурного стиля. Изготовление этих конструкций – дело весьма непростое и требует высокого мастерства, а также наличия специального инструмента. Одной из разновидностей круглых окон являются иллюминаторы, устанавливаемые в морских и воздушных судах.

Таким образом, решать задачу определения длины окружности часто приходится инженерам-конструкторам, разрабатывающим различные машины, механизмы и агрегаты, а также архитекторам и проектировщикам. Поскольку число π , необходимое для этого, является бесконечным, то с абсолютной точностью определить этот параметр не представляется возможным, и поэтому при вычислениях учитывается та ее степень, которая в том или ином конкретном случае является необходимой и достаточной.

Поделиться: